分析 f(x)解析式利用誘導公式,二倍角的正弦、余弦函數公式化為一個角的正弦函數,找出ω的值,代入周期公式求出最小正周期;根據x的范圍求出值域即可.
解答 解:f(x)=cosxsinx-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{2}$=$\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x=sin(2x-$\frac{π}{3}$),
∵ω=2,∴T=$\frac{2π}{2}$=π,
∵$\frac{π}{6}$≤x≤$\frac{2π}{3}$,
∴0≤2x-$\frac{π}{3}$≤π,即0≤sin(2x-$\frac{π}{3}$)≤1,
則f(x)在[$\frac{π}{6}$,$\frac{2π}{3}$]上的值域為[0,1],
故答案為:π,[0,1]
點評 此題考查了三角函數中的恒等變換應用,以及三角函數的周期性及其求法,熟練掌握運算法則及公式是解本題的關鍵.
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{3},1$ | B. | $-\sqrt{3},1$ | C. | $\sqrt{3},-1$ | D. | -3,-1 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 9 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $(-\frac{π}{6}+kπ,\frac{π}{6}+kπ)k∈Z$ | B. | $(-\frac{π}{6}+kπ,\frac{π}{3}+kπ)k∈Z$ | C. | $(-\frac{π}{2}+kπ,\frac{π}{6}+kπ)k∈Z$ | D. | $(-\frac{π}{6}+kπ,\frac{π}{2}+kπ)k∈Z$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{2π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com