9.已知過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F且斜率為$\sqrt{3}$的直線與拋物線交于A,B兩點(diǎn),且|AF|>|BF|,則$\frac{{|{AF}|}}{{|{BF}|}}$=3.

分析 設(shè)拋物線y2=2px(p>0)的準(zhǔn)線為l,分別過(guò)點(diǎn)A,B作AM⊥l,BN⊥l,垂足為M,N.過(guò)點(diǎn)B作BC⊥AM交于點(diǎn)C.由拋物線的定義可得:|AM|=|AF|,|BN|=|BF|.由于AM∥x軸,∠BAC=∠AFx=60°.在Rt△ABC中,|AC|=$\frac{1}{2}$|AB|,化簡(jiǎn)即可得出.

解答 解:斜率為$\sqrt{3}$的直線傾斜角為60°.
設(shè)拋物線y2=2px(p>0)的準(zhǔn)線為l:x=-$\frac{p}{2}$.
如圖所示,分別過(guò)點(diǎn)A,B作AM⊥l,BN⊥l,垂足為M,N.
過(guò)點(diǎn)B作BC⊥AM交于點(diǎn)C.
則|AM|=|AF|,|BN|=|BF|.
∵AM∥x軸,
∴∠BAC=∠AFx=60°.
在Rt△ABC中,|AC|=$\frac{1}{2}$|AB|
又|AM|-|BN|=|AC|,
∴|AF|-|BF|=$\frac{1}{2}$(|AF|+|BF|),
化為|AF|=3|BF|,則$\frac{{|{AF}|}}{{|{BF}|}}$=3.
故答案為:3.

點(diǎn)評(píng) 本題考查了拋物線的定義、含60°角的直角三角形的性質(zhì)、平行線的性質(zhì),考查了輔助線的作法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知正三棱錐V-ABC的正視圖、側(cè)視圖和俯視圖如圖所示,則該正三棱錐側(cè)棱與底面所成的角是( 。
A.$\frac{π}{3}$B.$arcsin\frac{{\sqrt{6}}}{3}$C.$\frac{π}{6}$D.$arcsin\frac{{2\sqrt{39}}}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)f(x)=$\frac{lg(x+1)}{{\sqrt{4-3x-{x^2}}}}$的定義域( 。
A.(-4,1)B.(-1,1)C.(-∞,-4)∪(1,+∞)D.(-4,-1)∪(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知隨機(jī)變量ξ的數(shù)學(xué)期望E(ξ)=0.05且η=5ξ+1,則E(η)等于1.25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知正項(xiàng)等比數(shù)列{an}的首項(xiàng)a1=1,a2•a4=16,則a8=( 。
A.32B.64C.128D.256

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列說(shuō)法中正確的是( 。
A.若命題P:?x0∈R,x02-x0+1<0,則¬P:?x∉R,x2-x+1≥0
B.命題“若圓C:(x-m+1)2+(y-m)2=1與兩坐標(biāo)軸都有公共點(diǎn),則實(shí)數(shù)m∈[0,1]”的逆否命題為真命題
C.已知相關(guān)變量(x,y)滿足回歸方程$\widehat{y}$=2-3x,若變量x增加一個(gè)單位,則y平均增加3個(gè)單位
D.已知隨機(jī)變量X~N(2,σ2),若P(X<a)=0.32,則P(X>4-a)=0.68

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.一個(gè)四面體的頂點(diǎn)在點(diǎn)間直角坐系O-xyz中的坐標(biāo)分別是(1,0,0),(0,1,0),(0,0,1),(1,1,1),畫該四面體三視圖中的正視圖時(shí),以xOz平面為投影面,則得到的正視圖可為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)f(x)=$\left\{{\begin{array}{l}{sinx,x∈[0,1]}\\{{x^2},x∈[1,2]}\end{array}}$,則$\int_0^2$f(x)dx等于( 。
A.$\frac{7}{3}$-cos1B.$\frac{10}{3}$-cos1C.$\frac{7}{3}$+cos1D.$\frac{10}{3}$+cos1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)a>0,b>0,分別用綜合法與分析法求證:a3+b3≥a2b+ab2

查看答案和解析>>

同步練習(xí)冊(cè)答案