已知命題p:?x∈R,2 x2-2>1,則命題¬p為(  )
A、?x∈R,2 x2-2≤1
B、?x0∈R,2 
x
2
0
-2
≤1
C、?x0∈R,2 
x
2
0
-2
<1
D、?x∈R,2 x2-2<1
考點(diǎn):命題的否定
專(zhuān)題:簡(jiǎn)易邏輯
分析:直接利用全稱(chēng)命題的否定是特稱(chēng)命題寫(xiě)出結(jié)果即可.
解答: 解:因?yàn)槿Q(chēng)命題的否定是特稱(chēng)命題,
所以命題¬p為:?x0∈R,2 
x
2
0
-2
≤1.
故選:B.
點(diǎn)評(píng):本題考查命題的否定,特稱(chēng)命題與全稱(chēng)命題的否定關(guān)系,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角a是第三象限角,且f(a)=
sin(π-a)sinacos(π+a)
sin(
π
2
-a)cos(a+
π
2
)tan(-a)

(Ⅰ)化簡(jiǎn)f(a)
(Ⅱ)若sin(2π-a)=
1
5
,求f(a)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={1,2,3,4,5},集合A={1,3,4},B={2,3,5}則(∁UA)∪B=( 。
A、{2}
B、{2,5}
C、{2,3,5}
D、{2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿(mǎn)足條件
y≥x
x+y≥1
x≥1
,則z=2x+y的最小值為( 。
A、3
B、2
C、
3
2
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sinθ•cosθ=
1
2
,則下列結(jié)論中一定成立的是( 。
A、sinθ=
2
2
B、sinθ=-
2
2
C、sinθ+cosθ=1
D、sinθ-cosθ=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

向量
a
=(0,2,1),向量
b
=(-1,1,-2),則向量
a
與向量
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)
x2
a2
-
y2
b2
=1(a>0,b>0)左、右焦點(diǎn)分別為F1、F2,點(diǎn)P在雙曲線(xiàn)右支上,且|PF1|=3|PF2|.
(1)求
b
a
的最大值,并寫(xiě)出此時(shí)雙曲線(xiàn)的漸進(jìn)線(xiàn)方程;
(2)當(dāng)點(diǎn)P的坐標(biāo)為(
4
10
5
3
10
5
)時(shí),
PF1
PF2
=0,求雙曲線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知非負(fù)實(shí)數(shù)x,y,z滿(mǎn)足
3
x+y+z-
3
=0,則x+y+1的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二項(xiàng)式(x+1)(x+
2
x
6的展開(kāi)式中的常數(shù)項(xiàng)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案