分析 (1)求出f(x)的導(dǎo)數(shù),可得切線的斜率和切點(diǎn),運(yùn)用點(diǎn)斜式方程可得切線的方程;
(2)求出f(x)的導(dǎo)數(shù)f′(x)=(x-1)(aex-1),對(duì)a討論,分a≤0時(shí),a=$\frac{1}{e}$時(shí),a>$\frac{1}{e}$時(shí),0<a<$\frac{1}{e}$時(shí),由導(dǎo)數(shù)大于0,可得增區(qū)間;導(dǎo)數(shù)小于0可得減區(qū)間.
解答 解:(1)函數(shù)f(x)=aexx-2aex-$\frac{1}{2}$x2+x的導(dǎo)數(shù)為
f′(x)=a(ex+xex)-2aex-x+1=(x-1)(aex-1),
可得f(x)在(2,f(2))處切線斜率為ae2-1,切點(diǎn)為(2,0),
即有切線的方程為y-0=(ae2-1)(x-2),即為y=(ae2-1)(x-2);
(2)由f(x)的導(dǎo)數(shù)為f′(x)=(x-1)(aex-1),
①當(dāng)a=0時(shí),f′(x)=-(x-1),當(dāng)x>1時(shí),f′(x)<0,f(x)遞減;
當(dāng)x<1時(shí),f′(x)>0,f(x)遞增;
②當(dāng)a<0時(shí),當(dāng)x>1時(shí),f′(x)<0,f(x)遞減;
當(dāng)x<1時(shí),f′(x)>0,f(x)遞增;
③當(dāng)a>0時(shí),若a=$\frac{1}{e}$,則f′(x)=(x-1)(ex-1-1),
f(x)在R上遞增;
若a>$\frac{1}{e}$,則f′(x)>0即為(x-1)(x-ln$\frac{1}{a}$)>0,可得x>1或x<ln$\frac{1}{a}$;
f′(x)<0即為(x-1)(x-ln$\frac{1}{a}$)<0,可得ln$\frac{1}{a}$<x<1;
若0<a<$\frac{1}{e}$,則f′(x)>0即為(x-1)(x-ln$\frac{1}{a}$)>0,可得x<1或x>ln$\frac{1}{a}$;
f′(x)<0即為(x-1)(x-ln$\frac{1}{a}$)<0,可得1<x<ln$\frac{1}{a}$.
綜上可得,a≤0時(shí),f(x)的增區(qū)間為(-∞,1),減區(qū)間為(1,+∞);
a=$\frac{1}{e}$時(shí),f(x)的增區(qū)間為R;
a>$\frac{1}{e}$時(shí),f(x)的增區(qū)間為(1,+∞),(-∞,ln$\frac{1}{a}$),
減區(qū)間為(ln$\frac{1}{a}$,1);
0<a<$\frac{1}{e}$時(shí),f(x)的增區(qū)間為(ln$\frac{1}{a}$,+∞),(-∞,1),減區(qū)間為(1,ln$\frac{1}{a}$).
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程和單調(diào)區(qū)間,注意運(yùn)用分類討論的思想方法,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 242 | B. | 160 | C. | 162 | D. | 486 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
t時(shí) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y米 | 1.5 | 1.0 | 0.5 | 0.98 | 1.5 | 1.01 | 0.5 | 0.99 | 1.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分且必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com