4.已知(1+2x)n的展開式中第6項與第7項的系數(shù)相等,求:
(1)展開式中二項式系數(shù)最大的項;
(2)展開式中系數(shù)最大的項.

分析 (1)求出展開式的通項,利用第6項與第7項的系數(shù)相等,建立方程,求出n,即可求出展開式中二項式系數(shù)最大的項;
(2)設(shè)第k+1項的系數(shù)最大,則:$\left\{{\begin{array}{l}{C_8^k×{2^k}≥C_8^{k-1}×{2^{k-1}}}\\{C_8^k×{2^k}≥C_8^{k+1}×{2^{k+1}}}\end{array}}\right.⇒5≤k≤6$,即可求出展開式中系數(shù)最大的項.

解答 解:(1)展開式的第k+1項為 ${T_{k+1}}=C_n^k{({2x})^k}$,
依題意有$C_n^5×{2^5}=C_n^6×{2^6}$,解得n=8,
∴(1+2x)6的展開式中,二項式系數(shù)最大的項為${T_5}=C_8^4{({2x})^4}=1120{x^4}$;
(2)設(shè)第k+1項的系數(shù)最大,則:$\left\{{\begin{array}{l}{C_8^k×{2^k}≥C_8^{k-1}×{2^{k-1}}}\\{C_8^k×{2^k}≥C_8^{k+1}×{2^{k+1}}}\end{array}}\right.⇒5≤k≤6$,又k∈Z+,
∴k=5或k=6,
展開式中系數(shù)最大的項為 ${T_6}=C_8^5{({2x})^5}=1792{x^5}$和 ${T_7}=C_8^6{({2x})^6}=1792{x^6}$.

點評 本題考查二項式定理的運用,考查方程思想,正確計算是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={0,1},集合B滿足A∪B={0,1},則集合B的個數(shù)有( 。
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.二次函數(shù)f(x)的最小值為1,且f(0)=f(4)=3.
(1)求f(x)的解析式;   
(2)若f(x)在區(qū)間[2a,3a+1]上單調(diào),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,PA⊥矩形ABCD所在的平面,M,N分別是PC,AB的中點,且PA=AB=2AD=4.
(1)求證:MN⊥CD;
(2)求四面體A-BMD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求直線$\left\{\begin{array}{l}{x=2-\frac{1}{2}t}\\{y=-1+\frac{1}{2}t}\end{array}\right.$(t為參數(shù))被圓x2+y2=4截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.命題“已知a,x為實數(shù),若關(guān)于x的不等式x2+(2a+1)x+a2+2≤0”的解集不是空集,則“a≥1”的逆否命題是真命題.(填“真”或“假”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列命題中,真命題的個數(shù)為(  )
①回歸系數(shù)γ滿足:|γ|的值越大,x,y的線性相關(guān)程度越弱;|γ|的值越小,x,y的線性相關(guān)程度越強;
②正態(tài)密度曲線中,σ越大,正態(tài)曲線越扁平;σ越小,正態(tài)曲線越尖陡;
③利用x2進(jìn)行獨立性檢驗,可以對推斷的正確性的概率作出估計,樣本容量越大,這個估計越準(zhǔn)確.
④從獨立性檢驗可知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時,我們說某人吸煙,那么他有99%的可能患上肺。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.過點P(2,-1)且垂直于直線x-2y+3=0的直線方程為2x+y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知等比數(shù)列{an}中,log2a1+log2a7=4,則a3a5=16.

查看答案和解析>>

同步練習(xí)冊答案