5.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{\frac{4}{π}\sqrt{1-{x^2}},0≤x<1}\\{5{x^4}+1,1≤x≤2}\end{array}}$,若數(shù)列{an}滿足:a1=$\int_0^2{f(x)dx}$,an+1-an=2n,則$\frac{a_n}{n}$的最小值為11.

分析 函數(shù)f(x)=$\left\{{\begin{array}{l}{\frac{4}{π}\sqrt{1-{x^2}},0≤x<1}\\{5{x^4}+1,1≤x≤2}\end{array}}$,可得a1=$\int_0^2{f(x)dx}$=${∫}_{0}^{1}\frac{4}{π}\sqrt{1-{x}^{2}}dx$+${∫}_{1}^{2}(5{x}^{4}+1)dx$=36,an+1-an=2n,利用an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1可得an,再利用基本不等式的性質(zhì)即可得出.

解答 解:∵函數(shù)f(x)=$\left\{{\begin{array}{l}{\frac{4}{π}\sqrt{1-{x^2}},0≤x<1}\\{5{x^4}+1,1≤x≤2}\end{array}}$,
∴a1=$\int_0^2{f(x)dx}$=${∫}_{0}^{1}\frac{4}{π}\sqrt{1-{x}^{2}}dx$+${∫}_{1}^{2}(5{x}^{4}+1)dx$=$\frac{4}{π}$×$\frac{π}{4}$+$({x}^{5}+x){|}_{1}^{2}$=36,
∵an+1-an=2n,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2(n-1)+2(n-2)+…+2×1+36
=$\frac{2×(n-1)n}{2}$+36=n2-n+36,
∴$\frac{a_n}{n}$=$\frac{{n}^{2}-n+36}{n}$=n+$\frac{36}{n}$-1≥$2\sqrt{n•\frac{36}{n}}$-1=11,當(dāng)且僅當(dāng)n=6時取等號.
故答案為:11.

點(diǎn)評 本題考查了微積分基本定理、“累加求和”方法、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x-y≤0}\\{x+2y≥0}\\{0<y≤2}\end{array}\right.$,則z=$\frac{y+1}{x+5}$的取值范圍是($\frac{1}{5}$,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=3sin$\frac{x}{2}cos\frac{x}{2}+4co{s}^{2}\frac{x}{2}$(x∈R)的最大值等于(  )
A.5B.$\frac{9}{2}$C.$\frac{5}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f(x)=2$\sqrt{3}$sinxcosx-sin2x+$\frac{1}{2}$cos2x+$\frac{1}{2}$,則下列結(jié)論錯誤的是( 。
A.f(x)在區(qū)間(0,$\frac{π}{6}$)上單調(diào)遞增
B.f(x)的一個對稱中心為(-$\frac{π}{12}$,0)
C.當(dāng)x∈[0,$\frac{π}{3}$]時,fx)的值域?yàn)閇1,$\sqrt{3}$]
D.先將函數(shù)f(x)的圖象的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的$\frac{1}{2}$倍,再向左平移$\frac{π}{8}$個單位后得到函數(shù)y=2cos(4x+$\frac{π}{6}$)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2}{3}π$D.$({2-\sqrt{2}})π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\frac{\sqrt{2}}{2}$,其右焦點(diǎn)到直線2ax+by-$\sqrt{2}$=0的距離為$\frac{\sqrt{2}}{3}$.
(1)求橢圓C1的方程;
(2)過點(diǎn)P(0,-$\frac{1}{3}$)的直線l交橢圓C1于A,B兩點(diǎn).
①證明:線段AB的中點(diǎn)G恒在橢圓C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的內(nèi)部;
②判斷以AB為直徑的圓是否恒過定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\sqrt{3}$sin2x+2sin2x.
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)將函數(shù)f(x)的圖象向左平移$\frac{π}{12}$個單位,再向下平移1個單位后得到函數(shù)g(x)的圖象,當(dāng)x∈[-$\frac{π}{6}$,$\frac{π}{3}$]時,求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.將函數(shù)y=sin(${\frac{1}{2}$x-$\frac{π}{3}}$)的圖象向右平移$\frac{π}{2}$個單位,再將所得的圖象所有點(diǎn)的橫坐標(biāo)縮短為原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),則所得圖象對應(yīng)的函數(shù)的一個單調(diào)遞增區(qū)間為( 。
A.[-$\frac{π}{12}$,$\frac{13π}{12}}$]B.[${\frac{13π}{12}$,$\frac{25π}{12}}$]C.[${\frac{π}{12}$,$\frac{13π}{12}}$]D.[${\frac{7π}{12}$,$\frac{19π}{12}}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=BB1,點(diǎn)D,E分別為BC,CC1的中點(diǎn).
(1)求證:B1D⊥平面ABE;
(2)若點(diǎn)P是線段B1D上一點(diǎn)且滿足$\frac{{{B_1}P}}{PD}$=$\frac{1}{2}$,求證:A1P∥平面ADE.

查看答案和解析>>

同步練習(xí)冊答案