11.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x-y≤0}\\{x+2y≥0}\\{0<y≤2}\end{array}\right.$,則z=$\frac{y+1}{x+5}$的取值范圍是($\frac{1}{5}$,3].

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用直線斜率的定義,結(jié)合數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域,則z=$\frac{y+1}{x+5}$的幾何意義是區(qū)域內(nèi)的到定點(diǎn)C(-5,-1)的斜率,
由圖象知CA的斜率最大,CO的斜率最小,
由$\left\{\begin{array}{l}{y=2}\\{x+2y=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=-4}\\{y=2}\end{array}\right.$,即A(-4,2),此時(shí)CA的斜率k=$\frac{2+1}{-4+5}$=3,
CO的斜率k=$\frac{1}{5}$,
∵原點(diǎn)不在區(qū)域內(nèi),
∴$\frac{1}{5}$<z≤,
故答案為:($\frac{1}{5}$,3]

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)直線斜率的公式,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且$\frac{2b-\sqrt{3}c}{\sqrt{3}a}$=$\frac{cosC}{cosA}$,則角A等于$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={x|x2-x-2<0},B={x|x>log2m},若A⊆B,則實(shí)數(shù)m的取值范圍是( 。
A.(0,4]B.($\frac{1}{2}$,1]C.(0,$\frac{1}{2}$]D.(-∞,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知i是虛數(shù)單位,復(fù)數(shù)z滿足z(-1+2i)=5i,則復(fù)數(shù)z的模為(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$\sqrt{6}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.($\sqrt{2x}$-$\frac{1}{x}$)9的二項(xiàng)式展開式中常數(shù)項(xiàng)的二項(xiàng)式系數(shù)為84(用符號(hào)或數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知f(x)=xn+xn-1+…+x-1,x∈(0,+∞).n是不小于2的固定正整數(shù).
(1)當(dāng)n=2時(shí),若不等式f(x)≤kx對(duì)一切x∈(0,1]恒成立,求實(shí)數(shù)k的取值范圍;
(2)試判斷函數(shù)f(x)在(${\frac{1}{2}$,1)內(nèi)零點(diǎn)的個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≥3-y}\\{y≤x+1}\\{2x-y-3≤0}{\;}\end{array}\right.$,則z=4x+6y+3的取值范圍為( 。
A.[17,48]B.[17,49]C.[19,48]D.[19,49]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{x^2}{4}+\frac{y^2}{3}$=1,過點(diǎn)P(4,0)且不垂直于x軸的直線l與曲線C相交于A,B兩點(diǎn).
(1)求$\overrightarrow{OA}•\overrightarrow{OB}$的取值范圍;
(2)若B點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)為E點(diǎn),探索直線AE與x軸的相交點(diǎn)是否為定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{\frac{4}{π}\sqrt{1-{x^2}},0≤x<1}\\{5{x^4}+1,1≤x≤2}\end{array}}$,若數(shù)列{an}滿足:a1=$\int_0^2{f(x)dx}$,an+1-an=2n,則$\frac{a_n}{n}$的最小值為11.

查看答案和解析>>

同步練習(xí)冊(cè)答案