求該幾何體的體積.
考點:由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:由三視圖可知:該幾何體是一個正方體內(nèi)部挖取一個圓柱.即可得出.
解答: 解:由三視圖可知:該幾何體是一個正方體內(nèi)部挖取一個圓柱.
∴該幾何體的體積V=83-π×42×8=512-128π.
點評:本題考查了正方體與圓柱的三視圖,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若x1,x2,x3,…,x2013的方差為3,則3(x1-2),3(x2-2),3(x3-2),…,3(x2013-2)的方差為( 。
A、3B、9C、18D、27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,F(xiàn)1,F(xiàn)2是其焦點,點P在橢圓上.
(Ⅰ)若∠F1PF2=90°,且△PF1F2的面積等于1,求橢圓的方程;
(Ⅱ)直線PF1交橢圓于另一點Q,分別過點P,Q作直線PQ的垂線,交x軸于點M,N,當|MN|取最小值時,求直線PQ的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:log363-2log3
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二項式(1-2i)3(1-2i)3,則展開式的第四項為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩家商場對同一種商品開展促銷活動,兩家商場對購買該商品的顧客獎勵方案如下:
甲商場:顧客轉(zhuǎn)動如圖所示圓盤,當指針指向陰影部分(圖中四個陰影部分均為扇形,且每個扇形圓心角均為20°,邊界忽略不計)即為中獎.
乙商場:從裝有3個白球2個紅球1個黃球的盒子中一次性隨機地摸出2個球,如果摸到的是2個紅球,即為中獎.
問:購買該商品的顧客在哪家商場中獎的可能性大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點O是△ABC的重心,內(nèi)角A、B、C所對的邊長分別為a、b、c,且2a•
OA
+b•
OB
+
2
3
3
c•
OC
=0,則∠C的大小是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
x(x+4),x≥0
x(x-4),x<0
的值域是( 。
A、[-4,+∞)
B、[0,+∞)
C、[4,+∞)
D、(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“x2-x-2<0”是“|x|<2”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

同步練習冊答案