5.已知sinθ+cosθ=$\frac{1}{5}$,θ∈(0,π).
(1)求tanθ的值;
(2)求$\frac{1+sin2θ+cos2θ}{1+sin2θ-cos2θ}$的值.

分析 由條件利用同角三角函數(shù)的基本關(guān)系、以及三角函數(shù)在各個(gè)象限中的符號(hào),先求的sinθ-cosθ的值,可得sinθ和cosθ的值,從而求得要求式子的值.

解答 解:(1)∵sinθ+cosθ=$\frac{1}{5}$,θ∈(0,π),
∴1+2sinθcosθ=$\frac{1}{25}$,即sinθcosθ=-$\frac{12}{25}$<0,
∴sinθ>0,cosθ<0.
∴sinθ-cosθ=$\sqrt{{(sinθ-cosθ)}^{2}}$=$\sqrt{1-2sinθcosθ}$=$\frac{7}{5}$,
∴sinθ=$\frac{4}{5}$,cosθ=-$\frac{3}{5}$,
∴tanθ=$\frac{sinθ}{cosθ}$=-$\frac{4}{3}$.
(2)$\frac{1+sin2θ+cos2θ}{1+sin2θ-cos2θ}$=$\frac{2sinθcosθ+{2cos}^{2}θ}{2sinθcosθ+{2sin}^{2}θ}$=$\frac{cosθ}{sinθ}$=$\frac{1}{tanθ}$=-$\frac{3}{4}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系、以及三角函數(shù)在各個(gè)象限中的符號(hào),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,正四棱錐S-ABCD的底面邊長(zhǎng)為2,E,F(xiàn)分別為SA,SD的中點(diǎn).
(1)證明:EF∥平面SBC;
(2)若平面BEF⊥平面SAD,求S-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)p:x≤k,q:1≤x<2,若p是q的必要條件,則實(shí)數(shù)k的取值范圍是k≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn,且S3=9,a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足bn=(an-1)2n,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知$\overrightarrow{a}$,$\overrightarrow$是兩個(gè)不共線的平面向量,向量$\overrightarrow{AB}$=λ$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{AC}$=$\overrightarrow{a}$-μ$\overrightarrow$(λ,μ∈R),若$\overrightarrow{AB}$∥$\overrightarrow{AC}$,則有( 。
A.λ+μ=2B.λ-μ=1C.λμ=-1D.λμ=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.某校高一(1)班共有40人,學(xué)號(hào)依次為1,2,3,…,40,現(xiàn)用系統(tǒng)抽樣的方法抽取一個(gè)容量為5的樣本,若學(xué)號(hào)為2,10,18,34的同學(xué)在樣本中,則還有一個(gè)同學(xué)的學(xué)號(hào)應(yīng)為( 。
A.27B.26C.25D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則( 。
A.ω=2,φ=$\frac{π}{6}$B.ω=2,φ=$\frac{π}{3}$C.ω=1,φ=$\frac{π}{6}$D.ω=1,φ=$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),滿足:a1=b1=1,a5=b3,且S3=9.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求$\frac{1}{{S}_{1}+1}$+$\frac{1}{{S}_{2}+1}$+…+$\frac{1}{{S}_{n}+n}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且2 f'(x)<f (x)(x∈R),f(2)=e (e為自然對(duì)數(shù)的底數(shù)),則不等式f (lnx)>x${\;}^{\frac{1}{2}}$的解集為(0,e2).

查看答案和解析>>

同步練習(xí)冊(cè)答案