分析 (1)根據(jù)條件可知a32=a1a7,即(a1+2d)2=a1(a1+6d),d和a1的關(guān)系,S3=3a2,即可求得a1和d,數(shù)列{an}的通項公式;
(2)求得數(shù)列{bn}的通項公式,采用乘以公比“錯位相減法”,即可求得數(shù)列{bn}的前n項和Tn.
解答 解:(1)等差數(shù)列{an}公差為d,首項為a1,
∵a1,a3,a7成等比數(shù)列.
∴a32=a1a7,
即(a1+2d)2=a1(a1+6d),
化簡得d=$\frac{1}{2}$a1,或d=0(舍去).
當d=$\frac{1}{2}$a1,
由等差數(shù)列S3=3a2,
∴a2=3,得a1=2,d=1.
∴an=a1+(n-1)d=2+(n-1)=n+1,即an=n+1,
數(shù)列{an}的通項公式an=n+1;
(2)由(1)可知:an=n+1,
bn=(an-1)2n=(n+1-1)2n=n•2n,
∴bn=n•2n,
數(shù)列{bn}的前n項和Tn,Tn=2+2×22+3×23+…+n×2n,
2Tn=22+2×23+3×24+…+n×2n+1,
兩式相減:得-Tn=2+22+22+…+2n-n×2n+1,
=2n+1-2-n×2n+1,
∴Tn=(n-1)2n+1+2.
數(shù)列{bn}的前n項和Tn,Tn=(n-1)2n+1+2.
點評 本題考查求等差數(shù)列的通項公式,考查采用錯位相減法求數(shù)列的前n項和,解題時要認真審題,注意等差數(shù)列、等比數(shù)列的性質(zhì)的合理運用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | a-c<b-c | B. | $\sqrt{a}$>$\sqrt$ | C. | $\frac{a}{c}$>$\frac{c}$ | D. | ac2>bc2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{\sqrt{5}}{3}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | -$\frac{2}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{π}{2}$,0) | B. | ($\frac{π}{4}$,0) | C. | ($\frac{π}{6}$,0) | D. | ($\frac{π}{8}$,0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com