【題目】已知由實(shí)數(shù)組成的等比數(shù)列{an}的前項(xiàng)和為Sn , 且滿足8a4=a7 , S7=254.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)對(duì)n∈N* , bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn

【答案】
(1)解:設(shè)等比數(shù)列{an}的公比為q,

由8a4=a7,可得8= =q3,解得q=2.

∵S7=254,∴ =254,解得a1=2.

∴an=2n


(2)解:bn= = = ,

∴Tn= + +…+ =1﹣


【解析】(1)設(shè)等比數(shù)列{an}的公比為q,由8a4=a7 , 可得8= =q3 , 解得q.由S7=254, =254,解得a1 . (2)bn= = = ,利用“裂項(xiàng)求和”方法即可得出.
【考點(diǎn)精析】本題主要考查了數(shù)列的前n項(xiàng)和的相關(guān)知識(shí)點(diǎn),需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣x3與g(x)=x3﹣ax的圖象上存在關(guān)于x軸的對(duì)稱點(diǎn),e為自然對(duì)數(shù)的底數(shù),則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,e)
B.(﹣∞,e]
C.(﹣∞,
D.(﹣∞, ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖四邊形ABCD為菱形,GACBD交點(diǎn),,

(I)證明:平面平面;

(II)若, 三棱錐的體積為,求該三棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且cos2A=3cos(B+C)+1.
(Ⅰ)求角A的大小;
(Ⅱ)若cosBcosC=﹣ ,且△ABC的面積為2 ,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=log2(|x+1|+|x﹣1|﹣a)
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的定義域;
(2)若不等式f(x)≥2的解集為R,求實(shí)數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為2的正方體沿對(duì)角線折起,得到三棱錐,則下列命題中,錯(cuò)誤的為( )

A. 直線平面

B.

C. 三棱錐的外接球的半徑為

D. 的中點(diǎn),則平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線過(guò)點(diǎn)P且與x軸、y軸的正半軸分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),是否存在這樣的直線滿足下列條件:①△AOB的周長(zhǎng)為12②△AOB的面積為6.若存在,求出方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的標(biāo)準(zhǔn)方程為該橢圓經(jīng)過(guò)點(diǎn),且離心率為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)橢圓長(zhǎng)軸上一點(diǎn)作兩條互相垂直的弦.若弦的中點(diǎn)分別為,證明:直線恒過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校書(shū)法興趣組有3名男同學(xué)AB,C和3名女同學(xué)X,YZ,其年級(jí)情況如下表:

一年級(jí)

二年級(jí)

三年級(jí)

男同學(xué)

A

B

C

女同學(xué)

X

Y

Z

現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加書(shū)法比賽每人被選到的可能性相同

用表中字母列舉出所有可能的結(jié)果;

設(shè)M為事件“選出的2人來(lái)自不同年級(jí)且性別相同”,求事件M發(fā)生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案