已知向量
a
=(2cosφ,2sinφ),φ∈(90°,180°),
b
=(1,1),則向量
a
b
的夾角為
 
考點(diǎn):數(shù)量積表示兩個(gè)向量的夾角
專題:平面向量及應(yīng)用
分析:由條件計(jì)算出|
a
|、|
b
|、
a
b
 的值,代入cosθ=
a
b
|
a
|•|
b
|
 化簡,結(jié)合θ、φ的范圍,利用誘導(dǎo)公式求得θ的值.
解答: 解:由題意可得|
a
|=2,|
b
|=
2
,
a
b
=2cosφ+2sinφ=2
2
sin(φ+45°),
設(shè)向量
a
b
的夾角為θ,則cosθ=
a
b
|
a
|•|
b
|
=
2
2
sin(φ+
π
4
)
2
2
=sin(φ+45°)=cos(φ+45°-90°),
再結(jié)合θ∈[0°,180°],φ∈(90°,180°),可得θ=φ+45°-90°=φ-45°,
故答案為:φ-45°.
點(diǎn)評:本題考查的知識點(diǎn)是平面向量數(shù)量積的坐標(biāo)表示、模、夾角,其中利用cosθ=
a
b
|
a
|•|
b
|
  計(jì)算兩個(gè)向量的夾角是解答本題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解方程組:
2x+y=7
4x+5y=11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+2x2
(Ⅰ)求函數(shù)f(x)的極大值和極小值;
(Ⅱ)若不等式f(x)≥ax+4xlnx恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)證明:
4×1+1
12
+
4×2+1
22
+
4×3+1
32
+…+
4×n+1
n2
≥ln(n+1)(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y2=x+1和定點(diǎn)A(3,1),B為曲線C上任意一點(diǎn),若
AP
=2
PB
,當(dāng)點(diǎn)B在曲線C上運(yùn)動(dòng)時(shí),求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如圖所示,現(xiàn)依次輸入如下四個(gè)函數(shù):
①f(x)=cosx;
②f(x)=
1
x

③f(x)=lgx;
④f(x)=
ex-e-x
2
,
則可以輸出的函數(shù)的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在x軸、y軸上截距相等且與圓(x+2
2
2+(y-3
2
2=1相切的直線L共有( 。l.
A、2B、3C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩臺相互獨(dú)立工作的電腦產(chǎn)生故障的概率分別為a,b,則產(chǎn)生故障的電腦臺數(shù)均值為( 。
A、abB、a+b
C、1-abD、1-a-b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:
a
=(3,1),
b
=(m,2)且
a
b
;命題q:關(guān)于x的函數(shù)y=(m2-5m-5)ax(a>0且a≠1)是指數(shù)函數(shù),則命題p是命題q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),且圖象關(guān)于直線x=2對稱.
(1)證明f(x)是周期函數(shù)
(2)若當(dāng)x∈[-2,2]時(shí),f(x)=-x2+1,求當(dāng)x∈[-6,-2]時(shí),f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案