9.曲線y=2x2-1在點(-1,1)的切線方程為4x+y+3=0.

分析 求函數(shù)的導數(shù),可得切線的斜率,由點斜式方程可得到切線方程.

解答 解:函數(shù)y=2x2-1的導數(shù)為f′(x)=4x,
則函數(shù)在點(-1,1)處的切線斜率k=f′(1)=-4,
則函數(shù)在點(-1,1)處的切線方程為y-1=-4(x+1),
即4x+y+3=0.
故答案為:4x+y+3=0.

點評 本題主要考查導數(shù)的幾何意義的應用,求函數(shù)的導數(shù)和運用點斜式方程是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.已知△ABC的三邊長a=3,b=4,c=$\sqrt{37}$,求最大角的度數(shù)(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=sin2x的圖象向左平移φ(0<φ<π)個單位后,所對應函數(shù)在區(qū)間$[\frac{π}{3},\frac{5π}{6}]$上單調遞減,則實數(shù)φ的值是( 。
A.$\frac{11π}{12}$B.$\frac{5π}{6}$C.$\frac{3π}{4}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.過拋物線y2=4x焦點的弦的中點的橫坐標為4,則該弦長為18.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知$f(\sqrt{x}+4)=x+8\sqrt{x}$,則f(x)=x2-16(x≥4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知復數(shù)$z=\frac{4+bi}{1-i}({b∈R})$的實部為-1,則復數(shù)z-b在復平面上對應的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知菱形ABCD的邊長為2,∠BAD=120°,$\overrightarrow{BE}=\frac{1}{2}\overrightarrow{BC}$,$\overrightarrow{DF}=\frac{1}{3}\overrightarrow{DC}$,則$\overrightarrow{AE}•\overrightarrow{AF}$=( 。
A.$\frac{1}{2}$B.2C.1D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若按如圖的算法流程圖運行,輸入的N的值為5,則輸出S值為( 。
A.4B.$\frac{5}{6}$C.$\frac{4}{5}$D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知極坐標系的極點在平面直角坐標系的原點O處,極軸與x軸的正半軸重合,且長度單位相同.直線l的極坐標方程為ρ=$\frac{9}{\sqrt{2}sin(θ+\frac{π}{4})}$,點P(1+cos α,sin α),參數(shù)α∈[0,2π).
(1)求點P軌跡的直角坐標方程 
(2)求點P到直線l距離的最小值.

查看答案和解析>>

同步練習冊答案