14.f(x)是周期為2的偶函數(shù),當(dāng)0≤x≤1時(shí),f(x)=2x,則$f({-\frac{5}{2}})$=1.

分析 根據(jù)函數(shù)奇偶性和周期性的性質(zhì),將條件進(jìn)行轉(zhuǎn)化進(jìn)行求解即可.

解答 解:∵f(x)是周期為2的偶函數(shù),
∴$f({-\frac{5}{2}})$=f(-2-$\frac{1}{2}$)=f(-$\frac{1}{2}$)=f($\frac{1}{2}$),
∵當(dāng)0≤x≤1時(shí),f(x)=2x,
∴f($\frac{1}{2}$)=1,
故答案為1.

點(diǎn)評(píng) 本小題主要考查函數(shù)的周期性、函數(shù)奇偶性的應(yīng)用、函數(shù)的值等基礎(chǔ)知識(shí),考查化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)復(fù)數(shù)z滿足(1+i)z=|1+i|,則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.寶寶的健康成長(zhǎng)是媽媽們最關(guān)心的問(wèn)題,父母親為嬰兒選擇什么品牌的奶粉一直以來(lái)都是育嬰中的一個(gè)重要話題.為了解國(guó)產(chǎn)奶粉的知名度和消費(fèi)者的信任度,某調(diào)查小組特別調(diào)查記錄了某大型連鎖超市2015年與2016年這兩年銷售量前5名的五個(gè)奶粉的銷量(單位:罐),繪制出如圖1的管狀圖:

(1)根據(jù)給出的這兩年銷量的管狀圖,對(duì)該超市這兩年品牌奶粉銷量的前五強(qiáng)進(jìn)行排名;
(2)分別計(jì)算這5個(gè)品牌奶粉2016年所占總銷量(僅指這5個(gè)品牌奶粉的總銷量)的百分比(百分?jǐn)?shù)精確到個(gè)位),并將數(shù)據(jù)填入如圖2上餅狀圖中的括號(hào)內(nèi);
(3)已知該超市2014年飛鶴奶粉的銷量為1650(單位:罐),以2014,2015,2016這3年銷量得出銷量y關(guān)于年份x的線性回歸方程,并據(jù)此預(yù)測(cè)2017年該超市飛鶴奶粉的銷量.
(相關(guān)公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$)=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\overline{{x}^{2}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知集合A={x|x2-2x-3≤0},B={x|4x≥2},則A∪B=( 。
A.$[{\frac{1}{2},3}]$B.$[{\frac{1}{2},3})$C.(-∞,3]D.[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.化簡(jiǎn)$\frac{tan(45°-α)}{1-tan{\;}^{2}(45°-α)}$•$\frac{sinαcosα}{cos{\;}^{2}α-sin{\;}^{2}α}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差都大于3,則稱這個(gè)數(shù)列為“S型數(shù)列”.
(1)已知數(shù)列{an}滿足a1=4,a2=8,an+an-1=8n-4(n≥2,n∈N*),求證:數(shù)列{an}是“S型數(shù)列”;
(2)已知等比數(shù)列{an}的首項(xiàng)與公比q均為正整數(shù),且{an}為“S型數(shù)列”,記bn=$\frac{3}{4}$an,當(dāng)數(shù)列{bn}不是“S型數(shù)列”時(shí),求數(shù)列{an}的通項(xiàng)公式;
(3)是否存在一個(gè)正項(xiàng)數(shù)列{cn}是“S型數(shù)列”,當(dāng)c2=9,且對(duì)任意大于等于2的自然數(shù)n都滿足($\frac{1}{n}$-$\frac{1}{n+1}$)(2+$\frac{1}{{c}_{n}}$)≤$\frac{1}{{c}_{n-1}}$+$\frac{1}{{c}_{n}}$≤($\frac{1}{n}$-$\frac{1}{n+1}$)(2+$\frac{1}{{c}_{n-1}}$)?如果存在,給出數(shù)列{cn}的一個(gè)通項(xiàng)公式(不必證明);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在三棱錐P-ABC中,側(cè)面PAB,側(cè)面PAC,側(cè)PBC兩兩互相垂直,且$PA:PB:PC=1:\sqrt{2}:\sqrt{3}$,設(shè)三棱錐P-ABC的體積為V1,三棱錐P-ABC的外接球的體積為V2,則$\frac{V_2}{V_1}$=(  )
A.$\frac{{7\sqrt{14}}}{3}π$B.C.D.$\frac{8}{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知f(x)=acos(x+2θ)+bx+3(a,b為非零常數(shù)),若f(1)=5,f(-1)=1,則θ的可能取值為( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知拋物線的標(biāo)準(zhǔn)方程是y2=6x,則它的焦點(diǎn)坐標(biāo)是(  )
A.$(\frac{3}{2},0)$B.$(-\frac{3}{2},0)$C.$(0,\frac{3}{2})$D.$(0,-\frac{3}{2})$

查看答案和解析>>

同步練習(xí)冊(cè)答案