【題目】放射性元素由于不斷有原子放射出微粒子而變成其他元素,其含量不斷減少,這種現(xiàn)象稱(chēng)為衰變.假設(shè)在放射性同位素銫137的衰變過(guò)程中,其含量M(單位:太貝克)與時(shí)間t(單位:年)滿足函數(shù)關(guān)系:M(t)=M0 ,其中M0為t=0時(shí)銫137的含量.已知t=30時(shí),銫137含量的變化率是﹣10In2(太貝克/年),則M(60)=(
A.5太貝克
B.75In2太貝克
C.150In2太貝克
D.150太貝克

【答案】D
【解析】解:M'(t)=M0× , M'(30)=M0× =﹣10ln2,
∴M0=600.

故選D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)的相關(guān)知識(shí),掌握分?jǐn)?shù)指數(shù)冪的運(yùn)算性質(zhì):①;②;③

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知E、F、G、H為空間四邊形ABCD的邊AB、BC、CD、DA上的點(diǎn),且EH∥FG.求證:EH∥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)2x,g(x)x2ax(其中aR).對(duì)于不相等的實(shí)數(shù)x1,x2,設(shè)m,n.現(xiàn)有如下命題:

①對(duì)于任意不相等的實(shí)數(shù)x1x2,都有m>0

②對(duì)于任意的a及任意不相等的實(shí)數(shù)x1,x2,都有n>0;

③對(duì)于任意的a,存在不相等的實(shí)數(shù)x1,x2,使得mn;

④對(duì)于任意的a,存在不相等的實(shí)數(shù)x1,x2,使得m=-n.

其中的真命題有________(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖y=f(x)的導(dǎo)函數(shù)的圖象,現(xiàn)有四種說(shuō)法:
(1)f(x)在(﹣3,1)上是增函數(shù);
(2)x=﹣1是f(x)的極小值點(diǎn);
(3)f(x)在(2,4)上是減函數(shù),在(﹣1,2)上是增函數(shù);
(4)x=2是f(x)的極小值點(diǎn);
以上正確的序號(hào)為( )

A.(1)(2)
B.(2)(3)
C.(3)(4)
D.(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知復(fù)數(shù)z=(2m2+3m﹣2)+(m2+m﹣2)i,(m∈R)根據(jù)下列條件,求m值.
(1)z是實(shí)數(shù);
(2)z是虛數(shù);
(3)z是純虛數(shù);
(4)z=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=
(1)當(dāng)x≤0時(shí),解不等式f(x)≥﹣1;
(2)寫(xiě)出該函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)g(x)=f(x)﹣m恰有3個(gè)不同零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),滿足f(xy)=f(x)+f(y),f(3)=1
(1)求f(1)、f( )的值;
(2)若滿足f(x)+f(x﹣8)≤2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校擬建一塊周長(zhǎng)為400m的操場(chǎng)如圖所示,操場(chǎng)的兩頭是半圓形,中間區(qū)域是矩形,學(xué)生做操一般安排在矩形區(qū)域,為了能讓學(xué)生的做操區(qū)域盡可能大,試問(wèn)如何設(shè)計(jì)矩形的長(zhǎng)和寬?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地教育研究中心為了調(diào)查該地師生對(duì)“高考使用全國(guó)統(tǒng)一命題的試卷”這一看法,對(duì)該市區(qū)部分師生進(jìn)行調(diào)查,先將調(diào)查結(jié)果統(tǒng)計(jì)如下:

贊成

反對(duì)

總計(jì)

教師

120

學(xué)生

40

總計(jì)

280

120

(1)請(qǐng)將表格補(bǔ)充完整,若該地區(qū)共有教師30000人,以頻率為概率,試估計(jì)該地區(qū)教師反對(duì)“高考使用全國(guó)統(tǒng)一命題的試卷”這一看法的人數(shù);

(2)按照分層抽樣從“反對(duì)”的人中先抽取6人,再?gòu)闹须S機(jī)選出3人進(jìn)行深入調(diào)研,求深入調(diào)研中恰有1名學(xué)生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案