年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分) 已知圓,點(diǎn),直線.
(1) 求與圓相切,且與直線垂直的直線方程;
(2) 在直線上(為坐標(biāo)原點(diǎn)),存在定點(diǎn)(不同于點(diǎn)),滿足:對于圓上任一點(diǎn),都有為一常數(shù),試求所有滿足條件的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
將一顆質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1、2、3、4、5、6)先后拋兩次,將得到的點(diǎn)數(shù)分別記為a,b.
(1)求滿足條件a+b≥9的概率;
(2)求直線ax+by+5=0與x2+y2=1相切的概率
(3)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,(其中為參數(shù),),在極坐標(biāo)系(以坐標(biāo)原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,曲線的極坐標(biāo)方程為.
(1)把曲線和的方程化為直角坐標(biāo)方程;
(2)若曲線上恰有三個(gè)點(diǎn)到曲線的距離為,求曲線的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C:
(1)當(dāng)為何值時(shí),曲線C表示圓;
(2)在(1)的條件下,若曲線C與直線交于M、N兩點(diǎn),且,求的值.
(3)在(1)的條件下,設(shè)直線與圓交于,兩點(diǎn),是否存在實(shí)數(shù),使得以為直徑的圓過原點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
過原點(diǎn)O作圓x2+y2?-6x-8y+20=0的兩條切線,設(shè)切點(diǎn)分別為P、Q,則線段PQ的長為 。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com