【題目】如圖,江的兩岸可近似的看成兩平行的直線,江岸的一側(cè)有A,B兩個蔬菜基地,江的另一側(cè)點C處有一個超市.已知A、B、C中任意兩點間的距離為20千米.超市欲在AB之間建一個運輸中轉(zhuǎn)站D,A,B兩處的蔬菜運抵D處后,再統(tǒng)一經(jīng)過貨輪運抵C處.由于A,B兩處蔬菜的差異,這兩處的運輸費用也不同.如果從A處出發(fā)的運輸費為每千米2元,從B處出發(fā)的運輸費為每千米1元,貨輪的運輸費為每千米3元.
(1)設(shè)∠ADC=α,試將運輸總費用S(單位:元)表示為α的函數(shù)S(α),并寫出自變量的取值范圍;
(2)問中轉(zhuǎn)站D建在何處時,運輸總費用S最。坎⑶蟪鲎钚≈担
【答案】
(1)解:由題在△ACD中,∵∠CAD=∠ABC=∠ACB= ,∠CDA=α,∴∠ACD= ﹣α.
又AB=BC=CA=20,△ACD中,
由正弦定理知 = = ,得CD= ,AD= ,
∴S=2AD+BD+3CD=AD+3CD+20= + +20
=10 +20 ( <α< )
(2)解:S′=10 ,令S′=0,得cosα=﹣
當(dāng)cosα<﹣ 時,S′<0;當(dāng)cosα>﹣ 時,S′>0,∴當(dāng)cosα=﹣ 時S取得最小值.
此時,sinα= ,AD=10﹣ ,
∴中轉(zhuǎn)站距A處10﹣ 千米時,運輸成本S最小
【解析】(1)由題在△ACD中,由正弦定理求得CD、AD的值,即可求得運輸成本S的解析式.(2)利用導(dǎo)數(shù)求得cosα=﹣ 時,函數(shù)S取得極小值,由此可得中轉(zhuǎn)點D到A的距離以及S的最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校對高三年級的學(xué)生進(jìn)行體檢,現(xiàn)將高三男生體重(單位:kg)的數(shù)據(jù)進(jìn)行整理后分為五組,并繪制出頻率分布直方圖(如圖所示).根據(jù)一般標(biāo)準(zhǔn),高三男生的體重超過65 kg屬于偏胖,低于55 kg屬于偏瘦.已知圖中從左到右第一、第三、第四、第五小組的頻率分別為0.25,0.20,0.10,0.05,第二小組的頻數(shù)為400,則該校高三年級男生的總數(shù)和體重正常的頻率分別為( )
A. 1000,0.50 B. 800,0.50
C. 800,0.60 D. 1000,0.60
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出兩個命題:
命題甲:關(guān)于x的不等式x2+(a﹣1)x+a2≤0的解集為;
命題乙:函數(shù)y=(2a2﹣a)x為增函數(shù).
(1)甲、乙至少有一個是真命題;
(2)甲、乙有且只有一個是真命題;
分別求出符合(1)(2)的實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次試驗中,兩個試驗數(shù)據(jù)x,y的統(tǒng)計結(jié)果如下面的表格1所示.
x | 1 | 2 | 3 | 4 | 5 |
y | 2 | 3 | 4 | 4 | 5 |
表格1
(1)在給出的坐標(biāo)系中畫出數(shù)據(jù)x,y的散點圖.
(2)補(bǔ)全表格2,根據(jù)表格2中的數(shù)據(jù)和公式求下列問題.
①求出y關(guān)于x的回歸直線方程中的.
②估計當(dāng)x=10時,的值是多少?
表格2
序號 | x | y | x2 | xy |
1 | 1 | 2 | 1 | 2 |
2 | 2 | 3 | 4 | 6 |
3 | 3 | 4 | 9 | 12 |
4 | 4 | 4 | 16 | 16 |
5 | 5 | 5 | 25 | 25 |
∑ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,設(shè)直線過點A( , ),B(3, ),且直線與曲線C:ρ=2rsinθ(r>0)有且只有一個公共點,求實數(shù)r的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是 ( )
A. “x<1”是“l(fā)og2(x+1)<1”的充分不必要條件
B. 命題“x>0,2x>1”的否定是“x0≤0,≤1”
C. 命題“若a≤b,則ac2≤bc2”的逆命題是真命題
D. 命題“若a+b≠5,則a≠2或b≠3”的逆否命題為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C: =1(a>1)的左、右頂點分別為A、B,P是橢圓C上任一點,且點P位于第一象限.直線PA交y軸于點Q,直線PB交y軸于點R.當(dāng)點Q坐標(biāo)為(0,1)時,點R坐標(biāo)為(0,2)
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求證: 為定值;
(3)求證:過點R且與直線QB垂直的直線經(jīng)過定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓過定點P(4,0),且在y軸上截得的弦MN的長為8.
(1)求動圓圓心C的軌跡方程;
(2)過點(2,0)的直線l與動圓圓心C的軌跡交于A,B兩點,求證:是一個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲,乙兩人進(jìn)行圍棋比賽,共比賽2n(n∈N+)局,根據(jù)以往比賽勝負(fù)的情況知道,每局甲勝的概率和乙勝的概率均為 .如果某人獲勝的局?jǐn)?shù)多于另一人,則此人贏得比賽.記甲贏得比賽的概率為P(n).
(1)求P(2)與P(3)的值;
(2)試比較P(n)與P(n+1)的大小,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com