【題目】如圖,直三棱柱ABC-A1B1C1中,且,E是棱CC1中點,F是AB的中點.
(1)求證:CF//平面AEB1;
(2)求點B到平面AEB1的距離.
科目:高中數學 來源: 題型:
【題目】“中國式過馬路”存在很大的交通安全隱患.某調查機構為了解路人對“中國式過馬路”的態(tài)度是否與性別有關,從馬路旁隨機抽取30名路人進行了問卷調查,得到了如下列聯表:
項目 | 男性 | 女性 | 總計 |
反感 | 10 | ||
不反感 | 8 | ||
總計 | 30 |
已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是.
(1)請將上面的列聯表補充完整(直接寫結果,不需要寫求解過程),并據此資料分析反感“中國式過馬路”與性別是否有關?
(2)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數為X,求X的分布列和數學期望.
附:K2=
.
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】抽樣得到某次考試中高二年級某班8名學生的數學成績和物理成績如下表:
學生編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數學成績x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理成績y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
(1) 求y與x的線性回歸直線方程(系數保留到小數點后兩位).
(2) 如果某學生的數學成績?yōu)?3分,預測他本次的物理成績.
(參考公式:回歸直線方程為=x+,其中
,a=-b.參考數據:=77.5,
≈84.9,,.)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓=1(a>b>0)的左、右焦點分別為F1,F2,過左焦點F1(-2,0)作x軸的垂線交橢圓于P,Q兩點,PF2與y軸交于E,A,B是橢圓上位于PQ兩側的動點.
(1)求橢圓的離心率e和標準方程;
(2)當∠APQ=∠BPQ時,直線AB的斜率kAB是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】太極圖是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現了一種相互轉化,相對統一的和諧美,定義:能夠將圓的周長和面積同時等分成兩個部分的函數稱為圓的一個“太極函數”,則下列有關說法中:
①對于圓的所有非常數函數的太極函數中,一定不能為偶函數;
②函數是圓的一個太極函數;
③存在圓,使得是圓的一個太極函數;
④直線所對應的函數一定是圓的太極函數;
⑤若函數是圓的太極函數,則
所有正確的是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平行六面體ABCD-A1B1C1D1中,E,F,G分別是A1D1,D1D,D1C1的中點.
(1)求證:EG∥AC;
(2)求證:平面EFG∥平面AB1C.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,內角A= ,P為△ABC的外心,若 =λ1 +2λ2 ,其中λ1與λ2為實數,則λ1+λ2的最大值為( )
A.
B.1﹣
C.
D.1+
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,.
(1)若函數是奇函數,求實數的值;
(2)在(1)的條件下,判斷函數與函數的圖象公共點個數,并說明理由;
(3)當時,函數的圖象始終在函數的圖象上方,求實數的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com