【題目】已知雙曲線的中心在原點,焦點F1,F2在坐標軸上,離心率為,且過點.

(1)求雙曲線的方程;

(2)若點M(3m)在雙曲線上,試求的值.

【答案】1x2y26.20

【解析】

(1)由題意可設雙曲線方程為x2y2λ(λ≠0),將點代入求出參數(shù)λ的值,從而求出雙曲線方程.
(2)先求出的解析式,把點M(3,m)代入雙曲線,可得到答案.

解:(1) ∵e,∴可設雙曲線的方程為x2y2λ(λ≠0).

∵雙曲線過點,∴1610λ,即λ6.

∴雙曲線的方程為x2y26.

(2)(1)可知,ab

c2F1(2,0),F2(20),

,

從而

由于點M(3,m)在雙曲線上,∴9m26,即m230,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知的頂點邊上的中線所在的直線方程是,AC邊上的高所在的直線方程是

求:(1AC邊所在的直線方程;

2AB邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是橢圓的左右焦點,焦距為6,橢圓上存在點使得,且的面積為9.

(Ⅰ)求的方程;

(Ⅱ)過的直線與橢圓相交于,兩點,直線軸不重合,軸上一點,且,求點縱坐標的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在三棱錐中,底面,,,的中點.

(1)求證:;

(2)若二面角的大小為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是函數(shù)的圖象上的一點,等比數(shù)列的前項和為,數(shù)列的首項為,且前項和滿足:.

1)求數(shù)列,的通項公式;

2)若數(shù)列的通項,求數(shù)列的前項和;

3)若數(shù)列的前項和為,是否存在最大的整數(shù),使得對任意的正整數(shù)n,均有總成立?若成立,求出t;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點和橢圓. 直線與橢圓交于不同的兩點.

(Ⅰ) 求橢圓的離心率;

(Ⅱ) 當時,求的面積;

(Ⅲ)設直線與橢圓的另一個交點為,當中點時,求的值 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某種細菌的適宜生長溫度為,為了研究該種細菌的繁殖數(shù)量(單位:個)隨溫度(單位:)變化的規(guī)律,收集數(shù)據(jù)如下:

溫度/

12

14

16

18

20

22

24

繁殖數(shù)量/個

20

25

33

27

51

112

194

對數(shù)據(jù)進行初步處理后,得到了一些統(tǒng)計量的值,如下表所示:

18

66

3.8

112

4.3

1428

20.5

其中,.

(1)請繪出關于的散點圖,并根據(jù)散點圖判斷哪一個更適合作為該種細菌的繁殖數(shù)量關于的回歸方程類型(結果精確到0.1);

(2)當溫度為時,該種細菌的繁殖數(shù)量的預報值為多少?

參考公式:對于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計分別為:,.參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為等腰梯形,,其中點在以為直徑的圓上,,,平面平面.

1)證明:平面.

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓心為的圓經(jīng)過點,且圓心在直線軸上.

(Ⅰ)求圓的方程;

(Ⅱ)過點的動直線與圓相交于,兩點.當時,求直線的方程.

查看答案和解析>>

同步練習冊答案