【題目】已知的頂點,邊上的中線所在的直線方程是,AC邊上的高所在的直線方程是

求:(1AC邊所在的直線方程;

2AB邊所在的直線方程.

【答案】12x+y5=0;2

【解析】

試題(1)根據(jù)AC邊的高所在的直線方程,設(shè)出AC所在的直線方程,再代入點A的坐標,求參數(shù)即可(2)由中點坐標公式表示出點B的坐標,再根據(jù)點BAC的高線上,可求出中點坐標,從而可確定直線AB的斜率,又由點A的坐標,即可表示出直線的方程.

試題解析:(1)由題意,直線的一個法向量AC邊所在直線的一個方向向量

AC邊所在直線方程為2x+y5=0

2y=1AB中線所在直線方程

設(shè)AB中點P,則B滿足方程

,得,P(-1,1

AB邊所在直線方程為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),mR

1)討論fx)的單調(diào)性;

2)若m∈(-1,0),證明:對任意的x1,x2[1,1-m]4fx1+x25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“科技引領(lǐng),布局未來”科技研發(fā)是企業(yè)發(fā)展的驅(qū)動力量。年,某企業(yè)連續(xù)年累計研發(fā)投入搭億元,我們將研發(fā)投入與經(jīng)營投入的比值記為研發(fā)投入占營收比,這年間的研發(fā)投入(單位:十億元)用右圖中的折現(xiàn)圖表示,根據(jù)折線圖和條形圖,下列結(jié)論錯誤的使( )

A. 年至年研發(fā)投入占營收比增量相比年至年增量大

B. 年至年研發(fā)投入增量相比年至年增量小

C. 該企業(yè)連續(xù)年研發(fā)投入逐年增加

D. 該企業(yè)來連續(xù)年來研發(fā)投入占營收比逐年增加

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的短軸端點為,點是橢圓上的動點,且不與,重合,點滿足,.

(Ⅰ)求動點的軌跡方程;

(Ⅱ)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知矩形,,,將沿矩形的對角線所在的直線進行翻折,在翻折過程中,則( ).

A. 時,存在某個位置,使得

B. 時,存在某個位置,使得

C. 時,存在某個位置,使得

D. 時,都不存在某個位置,使得

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】社區(qū)服務(wù)是高中學生社會實踐活動的一個重要內(nèi)容,漢中某中學隨機抽取了100名男生、100名女生,了解他們一年參加社區(qū)服務(wù)的時間,按,,,(單位:小時)進行統(tǒng)計,得出男生參加社區(qū)服務(wù)時間的頻率分布表和女生參加社區(qū)服務(wù)時間的頻率分布直方圖.

(1)完善男生參加社區(qū)服務(wù)時間的頻率分布表和女生參加社區(qū)服務(wù)時間的頻率分布直方圖.

抽取的100名男生參加社區(qū)服務(wù)時間的頻率分布表

社區(qū)服務(wù)時間

人數(shù)

頻率

0.05

20

0.35

30

合計

100

1

學生社區(qū)服務(wù)時間合格與性別的列聯(lián)表

不合格的人數(shù)

合格的人數(shù)

(2)按高中綜合素質(zhì)評價的要求,高中學生每年參加社區(qū)服務(wù)的時間不少于20個小時才為合格,根據(jù)上面的統(tǒng)計圖表,完成抽取的這200名學生參加社區(qū)服務(wù)時間合格與性別的列聯(lián)表,并判斷是否有以上的把握認為參加社區(qū)服務(wù)時間達到合格程度與性別有關(guān),并說明理由.

(3)用以上這200名學生參加社區(qū)服務(wù)的時間估計全市9萬名高中學生參加社區(qū)服務(wù)時間的情況,并以頻率作為概率.

(i)求全市高中學生參加社區(qū)服務(wù)時間不少于30個小時的人數(shù).

(ⅱ)對我市高中生參加社區(qū)服務(wù)的情況進行評價.

參考公式

0.150

0.100

0.050

0.025

0.010

0.002

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,離心率為,是橢圓上位于第一象限內(nèi)的任意一點,為坐標原點,關(guān)于的對稱點為,圓.

1)求橢圓和圓的標準方程;

2)過點與圓相切于點,使得點,點的兩側(cè).求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】網(wǎng)約車的興起豐富了民眾出行的選擇,為民眾出行提供便利的同時也解決了很多勞動力的就業(yè)問題,據(jù)某著名網(wǎng)約車公司“滴滴打車”官網(wǎng)顯示,截止目前,該公司已經(jīng)累計解決退伍軍人轉(zhuǎn)業(yè)為兼職或?qū)B毸緳C三百多萬人次,梁某即為此類網(wǎng)約車司機,據(jù)梁某自己統(tǒng)計某一天出車一次的總路程數(shù)可能的取值是20、22、24、26、28、,它們出現(xiàn)的概率依次是、、、、t、

(1)求這一天中梁某一次行駛路程X的分布列,并求X的均值和方差;

(2)網(wǎng)約車計費細則如下:起步價為5元,行駛路程不超過時,租車費為5元,若行駛路程超過,則按每超出(不足也按計程)收費3元計費.依據(jù)以上條件,計算梁某一天中出車一次收入的均值和方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的中心在原點,焦點F1,F2在坐標軸上,離心率為,且過點.

(1)求雙曲線的方程;

(2)若點M(3,m)在雙曲線上,試求的值.

查看答案和解析>>

同步練習冊答案