【題目】如圖所示,在三棱錐中,底面,,,,為的中點.
(1)求證:;
(2)若二面角的大小為,求三棱錐的體積.
【答案】(1)見解析;(2).
【解析】
(1)由余弦定理求出BC,因為為的中點,得BD=CD,因為,平方求出AD,利用勾股定理得AB⊥AD,結(jié)合PA⊥AD,得AD⊥平面PAB,從而AD⊥PB得證.
(2)分別以直線AB,AD,AP為x軸,y軸,z軸建立空間直角坐標(biāo)系,設(shè)PA=a,求出平面PBC的法向量,平面PAB的法向量,利用向量法求出a,然后求解VP﹣ABC=×S△ABC×PA即可.
(1)在中,由余弦定理得,則.
因為為的中點,則.
因為,則
,所以.
因為,則.
因為底面,則,所以平面,從而.
(2)分別以直線,,為軸,軸,軸建立空間直角坐標(biāo)系,如圖所示.
設(shè),則點,,,所以,.
設(shè)平面的法向量為,則,即,
取,則,,所以.
因為為平面的法向量,
則,即.
所以,解得,所以.
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的短軸端點為,,點是橢圓上的動點,且不與,重合,點滿足,.
(Ⅰ)求動點的軌跡方程;
(Ⅱ)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)約車的興起豐富了民眾出行的選擇,為民眾出行提供便利的同時也解決了很多勞動力的就業(yè)問題,據(jù)某著名網(wǎng)約車公司“滴滴打車”官網(wǎng)顯示,截止目前,該公司已經(jīng)累計解決退伍軍人轉(zhuǎn)業(yè)為兼職或?qū)B毸緳C三百多萬人次,梁某即為此類網(wǎng)約車司機,據(jù)梁某自己統(tǒng)計某一天出車一次的總路程數(shù)可能的取值是20、22、24、26、28、,它們出現(xiàn)的概率依次是、、、、t、.
(1)求這一天中梁某一次行駛路程X的分布列,并求X的均值和方差;
(2)網(wǎng)約車計費細則如下:起步價為5元,行駛路程不超過時,租車費為5元,若行駛路程超過,則按每超出(不足也按計程)收費3元計費.依據(jù)以上條件,計算梁某一天中出車一次收入的均值和方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某個公園有個池塘,其形狀為直角△ABC,∠C=90°,AB=2百米,BC=1百米.
(1)現(xiàn)在準(zhǔn)備養(yǎng)一批供游客觀賞的魚,分別在AB、BC、CA上取點D,E,F,如圖(1),使得EF‖AB,EF⊥ED,在△DEF喂食,求△DEF 面積S△DEF的最大值;
(2)現(xiàn)在準(zhǔn)備新建造一個荷塘,分別在AB,BC,CA上取點D,E,F,如圖(2),建造△DEF
連廊(不考慮寬度)供游客休憩,且使△DEF為正三角形,求△DEF邊長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求證:橢圓中斜率為的平行弦的中點軌跡必過橢圓中心;
(2)用作圖方法找出下面給定橢圓的中心;
(3)我們把由半橢圓與半橢圓合成的曲線稱作“果圓”,其中,,.如圖,設(shè)點,,是相應(yīng)橢圓的焦點,,和,是“果圓” 與,軸的交點. 連結(jié)“果圓”上任意兩點的線段稱為“果圓”的弦.試研究:是否存在實數(shù),使斜率為的“果圓”平行弦的中點軌跡總是落在某個橢圓上?若存在,求出所有可能的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的中心在原點,焦點F1,F2在坐標(biāo)軸上,離心率為,且過點.
(1)求雙曲線的方程;
(2)若點M(3,m)在雙曲線上,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處取得極小值.
(1)求實數(shù)的值;
(2)設(shè),討論函數(shù)的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,A(0,1),AB邊上的高CD所在直線的方程為x+2y-4=0,AC邊上的中線BE所在直線的方程為2x+y-3=0.
(1)求直線AB的方程;
(2)求直線BC的方程;
(3)求△BDE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com