9.在直角坐標(biāo)平面,已知兩定點A(1,0)、B(1,1)和一動點M(x,y)滿足$\left\{\begin{array}{l}0≤\overrightarrow{OM}•\;\overrightarrow{OA}≤1\\ 0≤\overrightarrow{OM}•\;\overrightarrow{OB}≤2\end{array}\right.$,則點P(x+y,x-y)構(gòu)成的區(qū)域的面積為4.

分析 利用數(shù)量的數(shù)量積將不等式組進(jìn)行化簡,設(shè)M(s,t),將條件進(jìn)行中轉(zhuǎn)化,即可得到結(jié)論.

解答 解:由$\left\{\begin{array}{l}0≤\overrightarrow{OM}•\;\overrightarrow{OA}≤1\\ 0≤\overrightarrow{OM}•\;\overrightarrow{OB}≤2\end{array}\right.$,得$\left\{\begin{array}{l}0≤x+y≤2\\ 0≤x≤1\end{array}\right.$
設(shè)M(s,t),則$\left\{\begin{array}{l}s=x+y\\ t=x-y\end{array}\right.$,解得$\left\{\begin{array}{l}x=\frac{1}{2}(s+t)\\ y=\frac{1}{2}(s-t)\end{array}\right.$,
由$\left\{\begin{array}{l}0≤x+y≤2\\ 0≤x≤1\end{array}\right.$,得$\left\{\begin{array}{l}0≤s+t≤2\\ 0≤s≤2\end{array}\right.$.
作出不等式組對應(yīng)的平面區(qū)域,
則對應(yīng)平行四邊形OABC,
則A(0,2),B(2,0),C(2,-2),
則四邊形的面積S=2×$\frac{1}{2}×2×2=4$,
故答案為:4.

點評 本題主要考查二元一次不等式組表示平面區(qū)域,利用向量的數(shù)量積將不等式進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知數(shù)列{an}前n項和為Sn,若Sn=2an-2n,則Sn=n•2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ax3+bx2+cx+d(a,b,c,d為實常數(shù))在x=0處取得極小值2,且曲線y=f(x)在x=3處的切線方程為3x+y-11=0.
(1)求函數(shù)f(x)的解析式;
(2)已知函數(shù)h1(x)=ex+t[f′(x)+x2-x],h2(x)=t[f′(x)+x2-x]-lnx.其中t為實常數(shù),試探究是否存在區(qū)間M,使得h1(x)和h2(x)在區(qū)間M上具有相同的單調(diào)性,若存在,說明區(qū)間M應(yīng)滿足的條件及對應(yīng)t的取值范圍,并指出h1(x)和h2(x)在區(qū)間M上的單調(diào)性;若不存在.請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.關(guān)于x的方程x2+4|x|+$\frac{2}{{{x^2}+4|x|}}$=3的最大實數(shù)根是$\sqrt{6}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的前n項和${S_n}=-{n^2}+26n$.
(Ⅰ)求{an}的通項公式;
(Ⅱ)求a2+a5+a8+…+a3n-1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)在定義域[2-a,3]上是偶函數(shù),在[0,3]上單調(diào)遞增,并且f(-m2-$\frac{a}{5}$)>f(-m2+2m-2),則m的取值范圍是( 。
A.$(1-\sqrt{2},\sqrt{2}]$B.$[1-\sqrt{2},\sqrt{2}]$C.$[\frac{1}{2},\sqrt{2}]$D.$(\frac{1}{2},\sqrt{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時,f(x)=x2,若對任意x∈[a,a+2],不等式f(x+a)≥f(3x+1)恒成立,則實數(shù)a的取值范圍是(-∞,-5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.家用電腦桌的桌面采用直線與弧線相結(jié)合,前部采用弧線,后部改用直線型.現(xiàn)將電腦桌靠在墻邊,沿墻面建立如圖所示的直角坐標(biāo)系.弧線EF的方程為y=$\frac{60}{x}$(5≤x≤12).鍵盤抽屜所在直線x+y-16=0與弧線交于A,B兩點.?dāng)M在弧線EF上選取一點P分別作x軸、y軸的垂線.垂足為C,D.四邊形OCPD(O為坐標(biāo)原點)與三角形OAB的公共區(qū)域內(nèi)放置電腦.設(shè)點P的坐標(biāo)為(x,y).公共部分面積為S.(單位:分米)
(1)求S關(guān)于x的表達(dá)式:
(2)求S的最大值及此時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知直角△AOB的面積為1,O為直角頂點.設(shè)向量$\overrightarrow{a}$=$\frac{\overrightarrow{OA}}{|\overrightarrow{OA}|}$,$\overrightarrow$=$\frac{\overrightarrow{OB}}{|\overrightarrow{OB}|}$,$\overrightarrow{OP}$=$\overrightarrow{a}$+2$\overrightarrow$,則$\overrightarrow{PA}•\overrightarrow{PB}$的最大值為1.

查看答案和解析>>

同步練習(xí)冊答案