19.已知直角△AOB的面積為1,O為直角頂點.設(shè)向量$\overrightarrow{a}$=$\frac{\overrightarrow{OA}}{|\overrightarrow{OA}|}$,$\overrightarrow$=$\frac{\overrightarrow{OB}}{|\overrightarrow{OB}|}$,$\overrightarrow{OP}$=$\overrightarrow{a}$+2$\overrightarrow$,則$\overrightarrow{PA}•\overrightarrow{PB}$的最大值為1.

分析 設(shè)$\overline{OA}$=x$\overrightarrow{a}$,$\overrightarrow{OB}$=y$\overrightarrow$,用$\overrightarrow{a},\overrightarrow$表示出$\overrightarrow{PA},\overrightarrow{PB}$,得出$\overrightarrow{PA}•\overrightarrow{PB}$關(guān)于x,y的函數(shù),利用基本不等式得出最值.

解答 解:設(shè)OA=x,OB=y,則xy=2,$\overline{OA}$=x$\overrightarrow{a}$,$\overrightarrow{OB}$=y$\overrightarrow$,
∵OA⊥OB,∴$\overrightarrow{a}•\overrightarrow=0$.
∵$\overrightarrow{a}$=$\frac{\overrightarrow{OA}}{|\overrightarrow{OA}|}$,$\overrightarrow$=$\frac{\overrightarrow{OB}}{|\overrightarrow{OB}|}$,∴${\overrightarrow{a}}^{2}$=${\overrightarrow}^{2}$=1.
∴$\overrightarrow{PA}$=$\overrightarrow{OA}-\overrightarrow{OP}$=(x-1)$\overrightarrow{a}$-2$\overrightarrow$.$\overrightarrow{PB}$=$\overrightarrow{OB}-\overrightarrow{OP}$=-$\overrightarrow{a}$+(y-2)$\overrightarrow$.
∴$\overrightarrow{PA}•\overrightarrow{PB}$=[(x-1)$\overrightarrow{a}$-2$\overrightarrow$]•[-$\overrightarrow{a}$+(y-2)$\overrightarrow$]=(1-x)${\overrightarrow{a}}^{2}$-2(y-2)${\overrightarrow}^{2}$=5-(x+2y).
∵x+2y≥2$\sqrt{2xy}$=4.
∴5-(x+2y)≤1.
故答案為:1.

點評 本題考查了平面向量的數(shù)量級運算,基本不等式的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在直角坐標(biāo)平面,已知兩定點A(1,0)、B(1,1)和一動點M(x,y)滿足$\left\{\begin{array}{l}0≤\overrightarrow{OM}•\;\overrightarrow{OA}≤1\\ 0≤\overrightarrow{OM}•\;\overrightarrow{OB}≤2\end{array}\right.$,則點P(x+y,x-y)構(gòu)成的區(qū)域的面積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.?dāng)?shù)列{an}滿足a1=3,(an+1-2)(an+1)+2=0,則an=$\frac{{2}^{n}}{{2}^{n}-\frac{4}{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,∠A、∠B、∠C所對的邊分別為a、b、c,若△ABC的面積S=$\frac{1}{4}$(b2+c2-a2),∠A 的弧度數(shù)為(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列{an}滿足a1=81,an=$\left\{\begin{array}{l}-1+{log_3}{a_{n-1}},\;n=2k\\{3^{{a_{n-1}}}},n=2k+1\end{array}$(k∈N*),則數(shù)列{an}的前n項和Sn的最大值為127.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐E-ABCD中,底面ABCD是正方形,AC與BD交于點O,EC⊥底面ABCD,F(xiàn)為BE的中點.
(1)求證:DE∥平面ACF;
(2)若AB=$\sqrt{2}$CE,在線段EO上是否存在點G,使得CG⊥平面BDE?若存在,請證明你的結(jié)論;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=ax-x(a>0,a≠1),若a>1,方程f(x)=0有兩個不等的實數(shù)根,則實數(shù)a的取值范圍是(1,${e}^{\frac{1}{e}}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在6張演唱會入場券中有一、二、三排座位入場券各一張,其余3張無座位(無座位入場券沒有區(qū)別),將這6張入場券分配給甲、乙、丙3個人,每人2張,甲能分到有座位的入場券的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.從某校的一次學(xué)料知識競賽成績中,隨機抽取了50名同學(xué)的成績,統(tǒng)計如下:
 組別[30,40][40,50][50,60][60,70][70,80][80,90][90,100]
 頻數(shù) 3 10 12 15 6 2 2
(Ⅰ)求這50名同學(xué)成績的樣本平均數(shù)$\overline{x}$(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅱ)由頻數(shù)分布表可以認為,本次學(xué)科知識競賽的成績Z服從正態(tài)分布N(μ,196),其中μ近似為樣本平均數(shù)$\overline{x}$.
①利用該正態(tài)分布.求P(Z>74);
②某班級共有20名同學(xué)參加此次學(xué)科知識比賽,記X表示這20名同學(xué)中成績超過74分的人數(shù),利用①的結(jié)果,求EX.附:若Z~N(μ,σ2),則P(μ-σ<Z<+σ)=0.6826,P(μ-2<Z<μ+2σ)=0.9544.

查看答案和解析>>

同步練習(xí)冊答案