在平面直角坐標系xOy中,已知橢圓C1:=1(a>b>0)的左焦點為F1(-1,0),且點P(0,1)在C1上.
(1)求橢圓C1的方程;
(2)設直線l同時與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.
(1)+y2=1; (2)y=x+或y=-x-.
【解析】
試題分析:(1)由于橢圓的方程是標準方程,知其中心在坐標原點,對稱軸就是兩坐標軸,所以由已知可直接得到半焦距c及短半軸b的值,然后由 求得的值,進而就可寫出橢圓的方程;(2)由已知得,直線l的斜率顯然存在且不等于0,故可設直線l的方程為y=kx+m,然后聯(lián)立直線方程與橢圓C1的方程,消去y得到關于x的一個一元二次方程,由直線l同時與橢圓C1相切知,其判別式等于零得到一個關于k,m的方程;再聯(lián)立直線l與拋物線C2的方程,消去y得到關于x的一個一元二次方程,由直線l同時與拋物線C2相切知,其判別式又等于零,再得到一個關于k,m的方程;和前一個方程聯(lián)立就可求出k,m的值,從而求得直線l的方程.
試題解析:(1)因為橢圓C1的左焦點為F1(-1,0),
所以c=1.將點P(0,1)代入橢圓方程=1,
得=1,即b=1. 所以a2=b2+c2=2.
所以橢圓C1的方程為+y2=1.
(2)由題意可知,直線l的斜率顯然存在且不等于0,設直線l的方程為y=kx+m,由消去y并整理得(1+2k2)x2+4kmx+2m2-2=0.
因為直線l與橢圓C1相切,
所以Δ1=16k2m2-4(1+2k2)(2m2-2)=0.
整理,得2k2-m2+1=0, ①
由消y,得
k2x2+(2km-4)x+m2=0.
∵直線l與拋物線C2相切,
∴Δ2=(2km-4)2-4k2m2=0,整理,得km=1, ②
聯(lián)立①、②,得或
∴l(xiāng)的方程為y=x+或y=-x-.
考點:1.橢圓的方程;2.直線與圓錐曲線的位置關系.
科目:高中數(shù)學 來源:2015屆山東省高二下學期期中考試文科數(shù)學試卷(解析版) 題型:選擇題
“=1”是“函數(shù)f(x)=在區(qū)間上為增函數(shù)”的 ( )
A.必要不充分條件 B.充分不必要條件
C.充要條件 D.既非充分又非必要條件
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省濟寧市高二5月質(zhì)量檢測文科數(shù)學試卷(解析版) 題型:選擇題
在△ABC中,AB=AC=5,BC=6,PA⊥平面ABC,PA=8,則P到BC的距離是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省濟寧市高二5月質(zhì)量檢測理科數(shù)學試卷(解析版) 題型:選擇題
若對可導函數(shù),當時恒有,若已知是一銳角三角形的兩個內(nèi)角,且,記則下列不等式正確的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省濟寧市高二5月質(zhì)量檢測理科數(shù)學試卷(解析版) 題型:選擇題
函數(shù)的值域是( )
A.(0,+∞) B.(0,1) C.(0,1] D.[1,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省濟寧市高二5月質(zhì)量檢測文科數(shù)學試卷(解析版) 題型:選擇題
雙曲線的虛軸長等于( )
A. B.-2t C. D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com