1.已知F1,F(xiàn)2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的左、右焦點(diǎn),且|F1F2|=2,若P是該雙曲線右支上的一點(diǎn),且滿足|PF2|=|F1F2|,則△PF1F2面積的最大值是(  )
A.4B.3C.2D.1

分析 利用雙曲線的定義求得|PF1|,作PF1邊上的高AF2,由A為中點(diǎn),可知AF1的長(zhǎng)度,進(jìn)而利用勾股定理求得AF2,運(yùn)用基本不等式可得△PF1F2的面積的最大值.

解答 解:由題意可得|PF2|=|F1F2|=2,
由雙曲線的定義可得,|PF1|-|PF2|=2a,
即為|PF1|=2+2a,
過F2作AF2⊥PF1,垂足為A,
由等腰三角形的性質(zhì)可得A為中點(diǎn),
由勾股定理可得|AF2|=$\sqrt{{2}^{2}-(1+a)^{2}}$,
即有△PF1F2面積為$\frac{1}{2}$|AF2|•|PF1|=$\frac{1}{2}$(2+2a)•$\sqrt{{2}^{2}-(1+a)^{2}}$
=$\sqrt{(1+a)^{2}}$•$\sqrt{{2}^{2}-(1+a)^{2}}$≤$\frac{(1+a)^{2}+4-(1+a)^{2}}{2}$=2,
當(dāng)且僅當(dāng)(1+a)2=4-(1+a)2,即a=$\sqrt{2}$-1時(shí),取得等號(hào).
則△PF1F2面積的最大值是2.
故選:C.

點(diǎn)評(píng) 本題考查雙曲線方程的定義和方程及性質(zhì),考查三角形面積的最值的求法,注意運(yùn)用勾股定理和基本不等式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知sinαtanα≥0,則α的取值集合為{α|2kπ-$\frac{π}{2}$<α<2kπ+$\frac{π}{2}$或α=(2k+1)π(k∈Z)}..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知三棱柱ABC-A1B1C1,側(cè)棱AA1垂直于底面ABC,∠$ABC=\frac{π}{2}$,AB=BC=AA1=4,D為BC的中點(diǎn).
(1)若E為棱CC1的中點(diǎn),求證:DE⊥A1C
(2)若E為棱CC1上異于端點(diǎn)的任意一點(diǎn),當(dāng)三棱錐C1-ADE的體積為$\frac{8}{3}$時(shí),求異面直線DE與AC1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知定義在[0,+∞)上的函數(shù)f(x)滿足f(x)=3f(x+2),當(dāng)x∈[0,2)時(shí),f(x)=$\left\{\begin{array}{l}{2^{x-1}}+1,0≤x≤1\\{log_{\frac{1}{2}}}\frac{x}{4},1<x<2\end{array}$,設(shè)f(x)在[2n-2,2n)上的最大值為an(n∈N*),且{an}的前n項(xiàng)和為Sn,則Sn=3(1-$\frac{1}{{3}^{n}}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=2sinωxcosωx-2$\sqrt{3}$cos2ωx+$\sqrt{3}$(ω>0),且y=f(x)的圖象的兩相鄰對(duì)稱軸間的距離為$\frac{π}{2}$.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,角C為銳角,且f(C)=$\sqrt{3}$.c=3,sinB=2sinA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,ccosB-(2a-b)cosC=0
(Ⅰ)求角C的大;
(Ⅱ)設(shè)函數(shù)f(x)=$sin\frac{x}{2}•cos\frac{x}{2}+{cos^2}\frac{x}{2}$,當(dāng)f(B)=$\frac{{\sqrt{2}+1}}{2}$時(shí),若a=$\sqrt{6}+\sqrt{2}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(3,x),若$\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)x=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{bn}的前n項(xiàng)和${B_n}=\frac{{3{n^2}-n}}{2}$.
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{an}的通項(xiàng)${a_n}=[{b_n}+{(-1)^n}]•{2^n}$,求數(shù)列{an}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,圓柱O-O1中,AB為下底面圓O的直徑,CD為上底面圓O1的直徑,AB∥CD,點(diǎn) E、F在圓O上,且AB∥EF,且AB=2,AD=1.
(Ⅰ)求證:平面ADF⊥平面CBF;
(Ⅱ)若DF與底面所成角為$\frac{π}{4}$,求幾何體EF-ABCD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案