9.交通指數(shù)是交通擁堵指數(shù)的簡(jiǎn)稱,是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通指數(shù)為T,其范圍為[0,10],分為五個(gè)級(jí)別,T∈[0,2)暢通;T∈[2,4)基本暢通;T∈[4,6)輕度擁堵;T∈[6,8)中度擁堵;T∈[8,10]嚴(yán)重?fù)矶拢绺叻鍟r(shí)段(T≥3),從某市交通指揮中心隨機(jī)選取了三環(huán)以內(nèi)的50個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如右圖.
(Ⅰ)這50個(gè)路段為中度擁堵的有多少個(gè)?
(Ⅱ)據(jù)此估計(jì),早高峰三環(huán)以內(nèi)的三個(gè)路段至少有一個(gè)是嚴(yán)重?fù)矶碌母怕适嵌嗌伲?br />(III)某人上班路上所用時(shí)間若暢通時(shí)為20分鐘,基本暢通為30分鐘,輕度擁堵為36分鐘;中度擁堵為42分鐘;嚴(yán)重?fù)矶聻?0分鐘,求此人所用時(shí)間的數(shù)學(xué)期望.

分析 (Ⅰ)利用(0.2+0.16)×1×50即可得出這50路段為中度擁堵的個(gè)數(shù).
(Ⅱ)設(shè)事件A“一個(gè)路段嚴(yán)重?fù)矶隆,則P(A)=0.1,事件B 至少一個(gè)路段嚴(yán)重?fù)矶隆,則P$(\overline{B})$=(1-P(A))3.P(B)=1-P($\overline{B}$)=0.271,可得三個(gè)路段至少有一個(gè)是嚴(yán)重?fù)矶碌母怕剩?br />(III)利用頻率分布直方圖即可得出分布列,進(jìn)而得出數(shù)學(xué)期望.

解答 解:(Ⅰ)(0.2+0.16)×1×50=18,這50路段為中度擁堵的有18個(gè).
(Ⅱ)設(shè)事件A“一個(gè)路段嚴(yán)重?fù)矶隆,則P(A)=0.1,
事件B 至少一個(gè)路段嚴(yán)重?fù)矶隆,則P$(\overline{B})$=(1-P(A))3=0.729.
P(B)=1-P($\overline{B}$)=0.271,所以三個(gè)路段至少有一個(gè)是嚴(yán)重?fù)矶碌母怕适?.271.
(III)由頻率分布直方圖可得:分布列如下表:

X30364260
P0.10.440.360.1
E(X)=30×0.1+36×0.44+42×0.36+60×0.1=39.96.
此人經(jīng)過(guò)該路段所用時(shí)間的數(shù)學(xué)期望是39.96分鐘.

點(diǎn)評(píng) 本題考查了頻率分布直方圖的應(yīng)用、互斥事件的概率計(jì)算公式、數(shù)學(xué)期望,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=sin2xcosφ+cos2xsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期和值域;
(2)設(shè)若點(diǎn)($\frac{π}{6}$,$\frac{1}{2}$)在函數(shù)y=f(x+$\frac{π}{6}$)的圖象上,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列各圖是正方體或正四面體,P,Q,R,S分別是所在棱的中點(diǎn),這四個(gè)點(diǎn)中不共面的一個(gè)圖是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)$y=\sqrt{3}sinx+cosx$的圖象可以由函數(shù)y=2sinx的圖象至少向左平移$\frac{π}{6}$個(gè)單位得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.f(x)定義在R上的偶函數(shù),且x≥0時(shí),f(x)=x3,若對(duì)任意x∈[2t-1,2t+3],不等式f(3x-t)≥8f(x)恒成立,則實(shí)數(shù)t的取值范圍是(-∞,-3]∪{0}∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.點(diǎn)P(-1,2,3)關(guān)于xOz平面對(duì)稱的點(diǎn)的坐標(biāo)是(-1,-2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有定義,對(duì)于給定的正數(shù)k,定義函數(shù):${f_k}(x)=\left\{\begin{array}{l}f(x)(f(x)≤k)\\ k\;\;\;\;\;\;(f(x)>k)\end{array}\right.$,取函數(shù)f(x)=2-x-e-x,若對(duì)任意的x∈(-∞,+∞),恒有fk(x)=f(x),則( 。
A.k的最大值為2B.k的最小值為2C.k的最大值為1D.k的最小值為1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知不等式組$\left\{\begin{array}{l}{2x+y-3≤0}\\{x-y+2≥0}\\{2x-3y-3≤0}\end{array}\right.$表示的平面區(qū)域?yàn)镈,P(x,y)為D上一點(diǎn),則|x+4|+|y+3|的最大值為( 。
A.$\frac{17}{2}$B.9C.$\frac{29}{3}$D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知f(x)在[-1,1]上既是奇函數(shù)又是減函數(shù),則滿足f(1-x)+f(3x-2)<0的x的取值范圍是$({\frac{1}{2},1}]$.

查看答案和解析>>

同步練習(xí)冊(cè)答案