18.展開(kāi)(1+2x)3=1+6x+mx2+8x3,則m=12.

分析 利用二項(xiàng)式定理把(1+2x)3展開(kāi),比較系數(shù)可得m的值.

解答 解:∵(1+2x)3=${C}_{3}^{0}$+${C}_{3}^{1}$•(2x)+${C}_{3}^{2}$•(2x)2+${C}_{3}^{3}$•(2x)3=1+6x+mx2+8x3,則m=3×4=12,
故答案為:12.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開(kāi)式的通項(xiàng)公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知命題p:?x∈R,|sinx|>a有解:命題q:?x∈[$\frac{π}{4}$,$\frac{3π}{4}$],sin2x+asinx-1≥0,若p∧q為真,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知集合A={1,2},B={2,3},則A∪B中元素的個(gè)數(shù)是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知a=$\frac{{\sqrt{2}+1}}{2}$,函數(shù)f(x)=logax,若正實(shí)數(shù)m,n滿(mǎn)足f(m)>f(n),則m,n的大小關(guān)系是m>n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知數(shù)列{an}滿(mǎn)足a1=4,an+1=2an
(1)求數(shù)列{an}的前n項(xiàng)和Sn;
(2)設(shè)等差數(shù)列{bn}滿(mǎn)足b7=a3,b15=a4,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)等比數(shù)列{an}的首項(xiàng)a1=1,且4a1,2a2,a3成等差數(shù)列,則數(shù)列{an}的前10項(xiàng)和S10=1023.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若$\frac{{S}_{3}}{{S}_{6}}$=$\frac{1}{3}$,則$\frac{{S}_{6}}{{S}_{12}}$=(  )
A.$\frac{1}{3}$B.$\frac{1}{8}$C.$\frac{1}{9}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.“函數(shù)f(x)=$\left\{\begin{array}{l}(a-1)x+2,x>2\\{a^x},x≤2\end{array}$在R上是單調(diào)遞增函數(shù)”是“函數(shù)g(x)=log2(x2-ax+1)在[1,+∞)上是單調(diào)遞增函數(shù)”的既不充分也不必要條件(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.某地人群中高血壓的患病率為p,由該地區(qū)隨機(jī)抽查n人,則(  )
A.樣本患病率X/n服從B(n,p)
B.n人中患高血壓的人數(shù)X服從B(n,p)
C.患病人數(shù)與樣本患病率均不服從B(n,p)
D.患病人數(shù)與樣本患病率均服從B(n,p)

查看答案和解析>>

同步練習(xí)冊(cè)答案