已知A、B、C是橢圓上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為,BC過橢圓m的中心,且

(1)求橢圓的方程;
(2)過點(diǎn)的直線l(斜率存在時)與橢圓m交于兩點(diǎn)P,Q,
設(shè)D為橢圓m與y軸負(fù)半軸的交點(diǎn),且,求實(shí)數(shù)t的取值范圍.
(1)(2)t∈(-2,4)
本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,解題的關(guān)鍵是將 轉(zhuǎn)化為kDN•k=-1進(jìn)行求解.
(1)根據(jù)橢圓的性質(zhì)和向量的數(shù)量積為零得到a,b的值,得到橢圓的方程。
(2)設(shè)出直線與橢圓聯(lián)立方程組,然后結(jié)合根與系數(shù)的關(guān)系,和向量的等式得到參數(shù)的關(guān)系式,進(jìn)而利用判別式得到范圍。
解(1)∵過(0,0)

∴∠OCA=90°, 即 又∵
將C點(diǎn)坐標(biāo)代入得 
解得  c2=8,b2=4
∴橢圓m: 
(2)由條件D(0,-2) ∵M(jìn)(0,t)
1°當(dāng)k=0時,顯然-2<t<2 
2°當(dāng)k≠0時,設(shè)
  消y得
由△>0 可得    ①
設(shè)
    
  
 
  ②
∴t>1 將①代入②得   1<t<4
∴t的范圍是(1,4)
綜上t∈(-2,4) 
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知離心率為的橢圓過點(diǎn),為坐標(biāo)原點(diǎn),平行于的直線交橢圓于不同的兩點(diǎn)

(1)求橢圓的方程。
(2)證明:若直線的斜率分別為、,求證:+=0。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題12分)
已知橢圓,斜率為的直線交橢圓兩點(diǎn),且點(diǎn)在直線的上方,
(1)求直線軸交點(diǎn)的橫坐標(biāo)的取值范圍;
(2)證明:的內(nèi)切圓的圓心在一條直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖橢圓的右頂點(diǎn)是,上下兩個頂點(diǎn)分別為,四邊形是矩形(為原點(diǎn)),點(diǎn)分別為線段的中點(diǎn).

(Ⅰ)證明:直線與直線的交點(diǎn)在橢圓上;
(Ⅱ)若過點(diǎn)的直線交橢圓于兩點(diǎn),關(guān)于軸的對稱點(diǎn)(不共線),
問:直線是否經(jīng)過軸上一定點(diǎn),如果是,求這個定點(diǎn)的坐標(biāo),如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的一個焦點(diǎn)坐標(biāo)為,那么的值為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過橢圓()的左焦點(diǎn)軸的垂線交橢圓于點(diǎn)為右焦點(diǎn),若,則橢圓的離心率為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F1、F2分別為橢圓=1的左、右焦點(diǎn),c=,若直線x=上存在點(diǎn)P,使線段PF1的中垂線過點(diǎn)F2,則橢圓離心率的取值范圍是( )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓C的中心在原點(diǎn)O,它的短軸長為,相應(yīng)的焦點(diǎn)的準(zhǔn)線了l與x軸相交于A,|OF1|=2|F1A|.
(1)求橢圓的方程;
(2)過橢圓C的左焦點(diǎn)作一條與兩坐標(biāo)軸都不垂直的直線l,交橢圓于P、Q兩點(diǎn),若點(diǎn)M在軸上,且使MF2的一條角平分線,則稱點(diǎn)M為橢圓的“左特征點(diǎn)”,求橢圓C的左特征點(diǎn);
(3)根據(jù)(2)中的結(jié)論,猜測橢圓的“左特征點(diǎn)”的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)已知橢圓的右頂點(diǎn),過的焦點(diǎn)且垂直長軸的弦長為.
(I) 求橢圓的方程;
(II) 設(shè)點(diǎn)在拋物線上,在點(diǎn)處的切線與交于點(diǎn).當(dāng)線段的中點(diǎn)與的中點(diǎn)的橫坐標(biāo)相等時,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案