(本題滿(mǎn)分14分)已知橢圓的右頂點(diǎn),過(guò)的焦點(diǎn)且垂直長(zhǎng)軸的弦長(zhǎng)為.
(I) 求橢圓的方程;
(II) 設(shè)點(diǎn)在拋物線(xiàn)上,在點(diǎn)處的切線(xiàn)與交于點(diǎn).當(dāng)線(xiàn)段的中點(diǎn)與的中點(diǎn)的橫坐標(biāo)相等時(shí),求的最小值.
(I);(II)的最小值為1.
本試題主要是考查了橢圓的方程的求解以及直線(xiàn)與橢圓的位置關(guān)系的運(yùn)用。
(1)因?yàn)闄E圓的右頂點(diǎn),過(guò)的焦點(diǎn)且垂直長(zhǎng)軸的弦長(zhǎng)為.,根據(jù)性質(zhì)得到橢圓的方程。
(2)不妨設(shè)則拋物線(xiàn)在點(diǎn)P處的切線(xiàn)斜率為,直線(xiàn)MN的方程為,將上式代入橢圓的方程中,得,即
結(jié)合判別式得到范圍和最值。
解:(I)由題意得所求的橢圓方程為,
(II)不妨設(shè)則拋物線(xiàn)在點(diǎn)P處的切線(xiàn)斜率為,直線(xiàn)MN的方程為,將上式代入橢圓的方程中,得,即,因?yàn)橹本(xiàn)MN與橢圓有兩個(gè)不同的交點(diǎn),所以有,
設(shè)線(xiàn)段MN的中點(diǎn)的橫坐標(biāo)是,則
設(shè)線(xiàn)段PA的中點(diǎn)的橫坐標(biāo)是,則,由題意得,即有,其中的;
當(dāng)時(shí)有,因此不等式不成立;因此,當(dāng)時(shí)代入方程,將代入不等式成立,因此的最小值為1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(本題滿(mǎn)分14分)
已知橢圓=1(a>b>0)的左右頂點(diǎn)為,上下頂點(diǎn)為, 左右焦點(diǎn)為,若為等腰直角三角形(1)求橢圓的離心率(2)若的面積為6,求橢圓的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知A、B、C是橢圓上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為,BC過(guò)橢圓m的中心,且

(1)求橢圓的方程;
(2)過(guò)點(diǎn)的直線(xiàn)l(斜率存在時(shí))與橢圓m交于兩點(diǎn)P,Q,
設(shè)D為橢圓m與y軸負(fù)半軸的交點(diǎn),且,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)p(x, y)在橢圓上,則的最大值為           

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知傾斜角的直線(xiàn)過(guò)橢圓的右焦點(diǎn)F交橢圓于A、B兩點(diǎn),P為右準(zhǔn)線(xiàn)上任意一點(diǎn),則為。ā。
A.鈍角;     B.直角;     C.銳角;    。模加锌赡埽

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分10分)已知A、B是橢圓與坐標(biāo)軸正半軸的兩交點(diǎn),在第一象限的橢圓弧上求一點(diǎn)P,使四邊形OPAB的面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分10分)求以橢圓的焦點(diǎn)為頂點(diǎn),以橢圓的頂點(diǎn)為焦點(diǎn)的雙曲線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓的左頂點(diǎn)為A1,右焦點(diǎn)為F2,點(diǎn)P為該橢圓上一動(dòng)點(diǎn),則當(dāng)取最小值時(shí),的值為(  )
A.B.3C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)橢圓的方程為,過(guò)右焦點(diǎn)且不與軸垂直的直線(xiàn)與橢圓交于兩點(diǎn),若在橢圓的右準(zhǔn)線(xiàn)上存在點(diǎn),使為正三角形,則橢圓的離心率的取值范圍是     

查看答案和解析>>

同步練習(xí)冊(cè)答案