橢圓C的中心在原點(diǎn)O,它的短軸長為,相應(yīng)的焦點(diǎn)的準(zhǔn)線了l與x軸相交于A,|OF1|=2|F1A|.
(1)求橢圓的方程;
(2)過橢圓C的左焦點(diǎn)作一條與兩坐標(biāo)軸都不垂直的直線l,交橢圓于P、Q兩點(diǎn),若點(diǎn)M在軸上,且使MF2的一條角平分線,則稱點(diǎn)M為橢圓的“左特征點(diǎn)”,求橢圓C的左特征點(diǎn);
(3)根據(jù)(2)中的結(jié)論,猜測橢圓的“左特征點(diǎn)”的位置.
(1)  (2)  (3) 左準(zhǔn)線與軸的交點(diǎn)
本試題主要是運(yùn)用橢圓的幾何性質(zhì)得到橢圓方程,然后結(jié)合新定義得到直線與 橢圓的方程聯(lián)立,結(jié)合韋達(dá)定理表示,然后得到左特征點(diǎn)。同時利用橢圓的準(zhǔn)線返程的得到交點(diǎn),進(jìn)而猜測左特征點(diǎn)。
(1)由條件知,可設(shè)橢圓方程為

(2))設(shè)左特征點(diǎn)為,左焦點(diǎn)為
可設(shè)直線的方程為
聯(lián)立直線與橢圓方程的得到關(guān)系式,進(jìn)而得到韋達(dá)定理,利用角平分線的性質(zhì)得到結(jié)論。
(3)因為橢圓的左準(zhǔn)線與軸的交點(diǎn)為,
故猜測橢圓的左特征點(diǎn)為左準(zhǔn)線與軸的交點(diǎn)。
解:(1)由條件知,可設(shè)橢圓方程為

橢圓方程為   …………4分
(2)設(shè)左特征點(diǎn)為,左焦點(diǎn)為
可設(shè)直線的方程為
,消去
又設(shè),則
      ①     
          、                …………6分
因為的角平分線,所以,即
       ③
代入③化簡,得     
   ④
再將①②代入④得       
 即左特征點(diǎn)為                      …………10分
(3)因為橢圓的左準(zhǔn)線與軸的交點(diǎn)為,
故猜測橢圓的左特征點(diǎn)為左準(zhǔn)線與軸的交點(diǎn). …………12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長軸長為4,短軸長為2,則橢圓方程是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直線與雙曲線的左右兩支分別交于、兩點(diǎn),與雙曲線的右準(zhǔn)線相交于點(diǎn),為右焦點(diǎn),若,又,則實(shí)數(shù)的值為
A.B.1C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A、B、C是橢圓上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為,BC過橢圓m的中心,且

(1)求橢圓的方程;
(2)過點(diǎn)的直線l(斜率存在時)與橢圓m交于兩點(diǎn)P,Q,
設(shè)D為橢圓m與y軸負(fù)半軸的交點(diǎn),且,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)
已知橢圓的左、右頂點(diǎn)分別A、B,橢圓過點(diǎn)(0,1)且離心率.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓上異于A,B兩點(diǎn)的任意一點(diǎn)P作PH⊥軸,H為垂足,延長HP到點(diǎn)Q,且PQ=HP,過點(diǎn)B作直線軸,連結(jié)AQ并延長交直線于點(diǎn)M,N為MB的中點(diǎn),試判斷直線QN與以AB為直徑的圓O的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)p(x, y)在橢圓上,則的最大值為           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知傾斜角的直線過橢圓的右焦點(diǎn)F交橢圓于A、B兩點(diǎn),P為右準(zhǔn)線上任意一點(diǎn),則為。ā。
A.鈍角;    。拢苯牵弧    C.銳角;    。模加锌赡;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)求以橢圓的焦點(diǎn)為頂點(diǎn),以橢圓的頂點(diǎn)為焦點(diǎn)的雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)為橢圓的兩個焦點(diǎn),以為圓心作圓,已知圓經(jīng)過橢圓的中心,且與橢圓相交于點(diǎn),若直線恰與圓相切,則該橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案