函數(shù)f(x)=
2x+2-x
2x-2-x
的圖象大致為( 。
A、
B、
C、
D、
考點:函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:將函數(shù)解析式化簡,判斷出此函數(shù)的性質(zhì),依據(jù)這些特征即可找出對應(yīng)的選項.
解答:解:f(x)=
2x+2-x
2x-2-x
=
4x+1
4x-1
=1+
2
4x-1
,此函數(shù)的定義域是{x|x≠0}.
且在兩個區(qū)間(-∞,0)與(0,+∞)上是減函數(shù),符合這一特征的僅有B.
故選B.
點評:本題考查函數(shù)的圖象與函數(shù)性質(zhì)的對應(yīng),熟練掌握函數(shù)的單調(diào)性奇偶性與圖象特征的對應(yīng)是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:
x=    1+t
y=-5+
3
t
(t為參數(shù))與曲線C:ρ2-2ρcosθ-4ρsinθ+3=0,
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)判斷l(xiāng)與C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線C1
x=1+tcosa
y=2+tsina
(t為參數(shù)),以坐標(biāo)原點為極點,以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2cosθ,且C1與C2相交于A,B兩點.
(Ⅰ)當(dāng)tana=-2時,求|AB|;
(Ⅱ)當(dāng)a變化時,求弦AB的中點P的參數(shù)方程,并說明它是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(ex-e-x)•sinx的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直角梯形ABCD中,∠A=90°,∠B=45°,底邊AB=5,高AD=3,點E由B沿折線BCD向點D移動,EM⊥AB于M,ENAD于N,設(shè)BM=x,矩形AMEN的面積為y,那么y與x的函數(shù)關(guān)系的圖象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x-x
1
3
的圖象大致為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1
x-sinx
的一段大致圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

紅星小學(xué)建立了一個以5米為半徑的圓形操場,操場邊有一根高為10米的旗桿(如圖所示),小明從操場的A點出發(fā),按逆時針方向繞著操場跑一周,設(shè)小明與旗桿的頂部C點的距離為y,小明所跑過的路程為x,則下列圖中表示距離y關(guān)于路程x的函數(shù)圖象的是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,
CM
=2
MB
,過點M的直線分別交射線AB、AC于不同的兩點P、Q,若
AP
=m
AB
AQ
=n
AC
,則mn+m的最小值為( 。
A、6
3
B、2
3
C、6
D、2

查看答案和解析>>

同步練習(xí)冊答案