A. | $\frac{1}{4}$ | B. | $\frac{4}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{5}$ |
分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用平面區(qū)域是直角三角形,求出k=2,結(jié)合三角形的面積公式即可得到結(jié)論.
解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖,
直線kx-y+1=0,過(guò)定點(diǎn)A(0,1),
∵k≠0,
∴若平面區(qū)域形狀是直角三角形,
則必有kx-y+1=0與直線y=-$\frac{1}{2}$x垂直時(shí),
此時(shí)$-\frac{1}{2}×k=-1$,
此時(shí)k=2,即直線方程為2x-y+1=0,
由$\left\{\begin{array}{l}{2x-y+1=0}\\{x+2y=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=-\frac{2}{5}}\\{y=\frac{1}{5}}\end{array}\right.$,即C(-$\frac{2}{5}$,$\frac{1}{5}$),
此時(shí)△AOC的面積S=$\frac{1}{2}×1×$$\frac{2}{5}$=$\frac{1}{5}$,
故選:D.
點(diǎn)評(píng) 本題主要考查一元二次不等式組表示平面區(qū)域,以及直線垂直的等價(jià)條件,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | 4 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,2) | B. | [0,2] | C. | {0,1,2} | D. | {0,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com