精英家教網 > 高中數學 > 題目詳情

【題目】如圖在四棱錐中,平面底面ABCD,底面ABCD是等腰梯形,,,.

1)證明:.

2)求平面PCD與平面PAB夾角(銳角)的余弦值.

【答案】1)證明見解析;(2

【解析】

1)過PPOABO.連OCOD,根據已知條件計算可得,根據平面與平面垂直的性質定理可得,再根據直線與平面垂直的判定和性質可證結論

2)以O為坐標原點.ODOB,OPxy,軸建立空間直角坐標洗,利用空間向量可求得平面PCD與平面PAB夾角(銳角)的余弦值.

(1)證明:過PPOABO.連OC,OD,如圖:

因為底面ABCD是等腰梯形,

所以,因為,,

,所以,

所以

,

所以,

所以,

所以,所以.

因為平面底面ABCD,交線為AB,

底面ABCD,所以.

,平面POC

平面POC,所以;

2)由(1)知,以O為坐標原點.OD,OBOPx,y,軸建立空間直角坐標系,如圖所示

,,,

所以,,

設平面PCD的法向量,

,即

,則,,所以,

平面PAB的法向量取),

所以

故平面PCDPAB夾角的余弦值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某數學教師在甲、乙兩個平行班采用“傳統(tǒng)教學”和“高效課堂”兩種不同的教學模式進行教學實驗.為了解教改實效,期中考試后,分別從兩個班中各隨機抽取名學生的數學成績進行統(tǒng)計,得到如下的莖葉圖:

1)求甲、乙兩班抽取的分數的中位數,并估計甲、乙兩班數學的平均水平和分散程度(不要求計算出具體值,給出結論即可);

2)若規(guī)定分數在的為良好,現已從甲、乙兩班成績?yōu)榱己玫耐瑢W中,用分層抽樣法抽出位同學參加座談會,要再從這位同學中任意選出人發(fā)言,求這人來自不同班的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知頂點為原點的拋物線,焦點軸上,直線與拋物線交于、兩點,且線段的中點為

1)求拋物線的標準方程.

2)若直線與拋物線交于異于原點的、兩點,交軸的正半軸于點,且有,直線,且有且只有一個公共點,請問直線是否恒過定點?若是,求出定點坐標;若不是,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】冠狀病毒是一個大型病毒家族,已知的有中東呼吸綜合征(MERS)和嚴重急性呼吸綜合征(SARS)等較嚴重的疾病,新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現的冠狀病毒新毒株,某小區(qū)為進一步做好新型冠狀病毒肺炎疫情知識的教育,在小區(qū)內開展新型冠狀病毒防疫安全公益課在線學習,在此之后組織了新型冠狀病毒防疫安全知識競賽在線活動.已知進入決賽的分別是甲、乙、丙、丁四位業(yè)主,決賽后四位業(yè)主相應的名次為第1,2,3,4名,該小區(qū)為了提高業(yè)主們的參與度和重視度,邀請小區(qū)內的所有業(yè)主在比賽結束前對四位業(yè)主的名次進行預測,若預測完全正確將會獲得禮品,現用表示某業(yè)主對甲、乙、丙、丁四位業(yè)主的名次做出一種等可能的預測排列,記

1)求出的所有可能情形;

2)若會有小禮品贈送,求該業(yè)主獲得小禮品的概率,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列滿足.記,設數列的前項和為,求證:當時.

(Ⅰ);

(Ⅱ)

(Ⅲ)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,直線的參數方程為為參數),以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(Ⅰ)寫出直線的普通方程和曲線的直角坐標方程;

(Ⅱ)已知點,直線與曲線相交于點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某快遞公司招聘快遞騎手,該公司提供了兩種日工資方案:方案(1)規(guī)定每日底薪50元,快遞騎手每完成一單業(yè)務提成3元:方案(2)規(guī)定每日底薪100元,快遞業(yè)務的前44單沒有提成,從第45單開始,每完成一單提成5元.該快遞公司記錄了每天騎手的人均業(yè)務量.現隨機抽取100天的數據,將樣本數據分為七組,整理得到如圖所示的頻率分布直方圖.

(Ⅰ)隨機選取一天,估計這一天該快遞公司的騎手的人均日快遞業(yè)務量不少于65單的概率;

(Ⅱ)若騎手甲、乙、丙選擇了日工資方案(1),丁、戊選擇了日工資方案(2).現從上述5名騎手中隨機選取2人,求至少有1名騎手選擇方案(2)的概率;

(Ⅲ)若僅從人均日收入的角度考慮,請你利用所學的統(tǒng)計學知識為新聘騎手做出日工資方案的選擇,并說明理由(同組中的每個數據用該組區(qū)間的中點值代替)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知實數,函數在區(qū)間上的最大值是2,則______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】圖①是一棟新農村別墅,它由上部屋頂和下部主體兩部分組成.如圖②,屋頂由四坡屋面構成,其中前后兩坡屋面ABFE和CDEF是全等的等腰梯形,左右兩坡屋面EAD和FBC是全等的三角形.點F在平面ABCD和BC上的射影分別為H,M.已知HM 5 m,BC 10 m,梯形ABFE的面積是△FBC面積的2.2倍.設∠FMH

(1)求屋頂面積S關于的函數關系式;

(2)已知上部屋頂造價與屋頂面積成正比,比例系數為k(k為正的常數),下部主體造價與其 高度成正比,比例系數為16 k.現欲造一棟上、下總高度為6 m的別墅,試問:當為何值時,總造價最低?

查看答案和解析>>

同步練習冊答案