(本題滿分14分)
已知函數(shù),當(dāng)時(shí),;
當(dāng)時(shí),.
(1)求在內(nèi)的值域;
(2)為何值時(shí),的解集為.
(1)在內(nèi)的值域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/23/0/jcbyi.png" style="vertical-align:middle;" />.
(2)當(dāng)時(shí),的解集為.
解析試題分析:由題意可得當(dāng)x=-3和x=2時(shí),有y=0,代入可求a,b,進(jìn)而可求f(x)
(1)由二次函數(shù)的性質(zhì)可判斷其在[0,1]上的單調(diào)性,進(jìn)而可求函數(shù)的值域
(2)令g(x)=-3x2+5x+c,要使g(x)≤0的解集為R.則△≤0,解不等式可求
解:由題意可知的兩根分別為,且,則由韋達(dá)定理可得:.
故,
(1)在內(nèi)單調(diào)遞減,故
故在內(nèi)的值域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/23/0/jcbyi.png" style="vertical-align:middle;" />.
(2),則要使的解集為R,只需要方程的判別式,即,解得.
∴當(dāng)時(shí),的解集為.
考點(diǎn):本試題主要考查了二次函數(shù)、二次方程及二次不等式之間的關(guān)系的相互轉(zhuǎn)化,二次函數(shù)性質(zhì)的應(yīng)用及二次不等式的求解,屬于知識(shí)的簡(jiǎn)單應(yīng)用。
點(diǎn)評(píng):解決該試題的關(guān)鍵是對(duì)于二次函數(shù)單調(diào)性性質(zhì)的運(yùn)用,以及二次不等式的恒陳立問題的等價(jià)轉(zhuǎn)化。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè).
(1)解不等式;
(2)若對(duì)任意實(shí)數(shù),恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)對(duì)于任意實(shí)數(shù),不等式恒成立.
(1)求的取值范圍;
(2)當(dāng)取最大值時(shí),解關(guān)于的不等式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知關(guān)于的不等式.
(Ⅰ)當(dāng)時(shí),解該不等式;
(Ⅱ)當(dāng)時(shí),解該不等式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com