、如圖,已知四棱錐中,底面是直角梯形,,,,平面,. 
(1)求證:平面;
(2)求證:平面;
(3)若M是PC的中點(diǎn),求三棱錐M—ACD的體積.

(1)
(2)
(1)證明:,且 平面
平面.  3分
(2)證明:在直角梯形中,過(guò)于點(diǎn),則四邊形為矩形
,又,∴,在Rt△中,,
,     4分
,則
     6分[
 ∴     7分
  
平面       9分(3)∵中點(diǎn),
到面的距離是到面距離的一半.       11分
.     14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題12分)如圖,在直三棱柱(側(cè)棱與底面垂直的三棱柱)中,,,邊的中點(diǎn).
(Ⅰ)求證:;                                    
(Ⅱ)求證:∥面. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)

如圖,在中,,分別為、的中點(diǎn),的延長(zhǎng)線交,F(xiàn)將沿折起,折成二面角,連接.
(I)求證:平面平面;
(II)當(dāng)時(shí),求二面角大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,直三棱柱中, AB=1,,∠ABC=60.
(1)證明:
(2)求二面角AB的余弦值。 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分13分)
各棱長(zhǎng)均為2的斜三棱柱ABC—DEF中,已知BF⊥AE,
BF∩CE=O,AB=AE,連結(jié)AO。
(I)求證:AO⊥平面FEBC。
(II)求二面角B—AC—E的大小。
(III)求三棱錐B—DEF的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.(本小題12 分)如圖,在四棱錐P-ABCD中,側(cè)面PAD是正三角形,且與底面ABCD垂直,底面ABCD為正方形,E、F分別為AB、PC的中點(diǎn).
①求證:EF⊥平面PCD;
②求平面PCB與平面PCD的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分13分)   如圖5,已知直角梯形所在的平面

垂直于平面,,
.    (1)在直線上是否存在一點(diǎn),使得
平面?請(qǐng)證明你的結(jié)論;
(2)求平面與平面所成的銳二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
在四棱錐P—ABCD中,底面ABCD是一直角梯形,
與底面成30°角.
  
(1)若為垂足,求證:;
(2)求平面PAB與平面PCD所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題14分)

如圖4,正方體中,點(diǎn)E在棱CD上。
(1)求證:;
(2)若E是CD中點(diǎn),求與平面所成的角;
(3)設(shè)M在上,且,是否存在點(diǎn)E,使平面⊥平面,若存在,指出點(diǎn)E的位置,若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案