8.已知實(shí)數(shù)-9,a1,a2,-1成等差數(shù)列,-9,b1,b2,b3,-1成等比數(shù)列,則a2b2-a1b2等于( 。
A.8B.-8C.±8D.$\frac{9}{8}$

分析 設(shè)等差數(shù)列的公差為d,依題意得d=$\frac{8}{3}$,${a}_{2}-{a}_{1}=d=\frac{8}{3}$,由${_{2}}^{2}$=-9×(-1)=9,得b2=-3或b2=3(舍),由此能求出a2b2-a1b2

解答 解:設(shè)等差數(shù)列的公差為d,依題意得-1=-9+3d,
解得d=$\frac{8}{3}$,∴${a}_{2}-{a}_{1}=d=\frac{8}{3}$,
又${_{2}}^{2}$=-9×(-1)=9,
∴b2=3或b2=-3,
若b2=3,${_{1}}^{2}$=-9b2=-27與${_{1}}^{2}$>0矛盾,∴b2=3舍去,
∴a2b2-a1b2=b2(a2-a1)=-3×$\frac{8}{3}$=-8.
故選:B.

點(diǎn)評(píng) 本題考查代數(shù)式化簡(jiǎn)求值,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列和等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{2x+1}{{x}^{2}},x<-\frac{1}{2}}\\{x+1,x≥-\frac{1}{2}}\end{array}\right.$,g(x)=x2-4x-4,若存在實(shí)數(shù)a使得f(a)+g(b)=0,則實(shí)數(shù)b的取值范圍是[-1,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},若A∩B=B,則實(shí)數(shù)m的取值范圍是(-∞,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)集合A={x|0≤x≤2},B={y|1≤y≤2},若對(duì)于函數(shù)y=f(x),其定義域?yàn)锳,值域?yàn)锽,則這個(gè)函數(shù)的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=lnx+$\frac{a}{x}$,x∈(0,3],其圖象上任意一點(diǎn)P(x0,y0)處的切線的斜率k≤$\frac{1}{2}$恒成立,則實(shí)數(shù)a的取值范圍是a≥$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在△ABC中,A>B,則下列不等式正確的個(gè)數(shù)為( 。
①sinA>sinB ②cosA<cosB ③sin2A>sin2B ④cos2A<cos2B.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知a>b,則下列不等式一定成立的是( 。
A.$\frac{1}{a}>\frac{1}$B.a2>b2C.2a>2bD.lga>lgb

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.a(chǎn)n=2n-1,Sn=n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)函數(shù)y=f(x)的定義域?yàn)镽,并且滿足f(x-y)=f(x)-f(y),且f(2)=1,當(dāng)x>0時(shí),f(x)>0.
(1)求f(0)的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并給出證明;
(3)如果f(x)+f(x+2)<2,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案