4.天干地支紀(jì)年法,源于中國(guó).中國(guó)自古便有十天干與十二地支.
十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;
十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.
天干地支紀(jì)年法是按順序以一個(gè)天干和一個(gè)地支相配,排列起來,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年為“甲子”,第二年為“乙丑”,第三年為“丙寅”,…,以此類推.排列到“癸酉”后,天干回到“甲”重新開始,即“甲戌”,“乙亥”,之后地支回到“子”重新開始,即“丙子”,…,以此類推.
已知2017年為丁酉年,那么到改革開放100年時(shí),即2078年為戊戌年.

分析 由題意可得數(shù)列天干是以10為等差的等差數(shù)列,地支是以12為公差的等差數(shù)列,以2017年的天干和地支分別為首項(xiàng),即可求出答案.

解答 解:天干是以10為構(gòu)成的等差數(shù)列,地支是以12為公差的等差數(shù)列,
從2017年到2078年經(jīng)過61年,且2017年為丁酉年,以2017年的天干和地支分別為首項(xiàng),
則61÷10=6余1,則2078的天干為戊,
61÷12=5余1,則戊的地支為戌,
故答案為:戊戌

點(diǎn)評(píng) 本題考查了等差數(shù)列在實(shí)際生活中的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.△ABC的外接圓圓心為P,若點(diǎn)P滿足$\overrightarrow{AP}$=$\frac{2}{5}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),則cos∠BAC=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知過點(diǎn)M(1,-1)的直線l與橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$相交于A,B兩點(diǎn),若點(diǎn)M是AB的中點(diǎn),則直線l的方程為3x-4y-7=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x),且在區(qū)間[0,1]上單調(diào)遞減,則將$f({-\frac{5}{2}})$,f(7),f(4)從小到大順序排列為$f(7)<f({-\frac{5}{2}})<f(4)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.某次數(shù)學(xué)考試的第一大題由10道四選一的選擇題構(gòu)成,要求考生從A,B,C,D中選出其中一項(xiàng)作為答案,每題選擇正確得5分,選擇錯(cuò)誤不得分.以下是甲、乙、丙、丁四位考生的答案及甲、乙、丙三人的得分結(jié)果:
題1題2題3題4題5題6題7題8題9題10得分
CBDDACDCAD35
CBCDBCABDC35
CADDADABAC40
CADDBCABAC?
據(jù)此可以推算考生丁的得分是40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖所示的程序框圖,當(dāng)輸入x的值為3時(shí),則其輸出的結(jié)果是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$tan({π-α})=\frac{3}{4},α∈({\frac{π}{2},π})$,則cosα=( 。
A.$-\frac{4}{5}$B.$\frac{4}{5}$C.$-\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.向量$\overrightarrow m=({\sqrt{3}sin\frac{x}{4},1}),\overrightarrow n=({cos\frac{x}{4},{{cos}^2}\frac{x}{4}})$,記$f(x)=\overrightarrow m•\overrightarrow n$.
(1)若f(x)=1,求$cos({x+\frac{π}{3}})$的值;
(2)在銳角△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且滿足(2a-c)cosB=bcosC,求f(2A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在如圖所示的幾何體中,EA⊥平面ABC,DB∥EA,AC⊥BC,且BC=BD=3,AE=2,AC=3$\sqrt{2}$,AF=2FB
(1)求證:CF⊥EF;
(2)求二面角D-CE-F的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案