9.已知X的分布列為:設(shè)Y=6X+1,則Y的數(shù)學(xué)期望E(Y)的值是( 。
X-101
P$\frac{1}{2}$$\frac{1}{6}$a
A.0B.$-\frac{1}{6}$C.1D.$\frac{29}{36}$

分析 根據(jù)所給的分布列和分布列的性質(zhì),寫出關(guān)于a的等式,解出a的值,算出x的期望,根據(jù)x與Y之間期望的關(guān)系,寫出出要求的期望值.

解答 解:由已知得$\frac{1}{2}$+$\frac{1}{6}$+a=1,
解得a=$\frac{1}{3}$,
則E(X)=-1×$\frac{1}{2}$+0×$\frac{1}{6}$+1×$\frac{1}{3}$=-$\frac{1}{6}$,
由E(Y)=6E(X)+1,
可得E(Y)=6×(-$\frac{1}{6}$)+1=0.
故選:A.

點(diǎn)評(píng) 本題考查分布列的性質(zhì),考查兩個(gè)變量分布列之間的關(guān)系,是一個(gè)基礎(chǔ)題,這種題目運(yùn)算量比較小,是一個(gè)容易得分題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某商場(chǎng)對(duì)品牌電視的日銷售量(單位:臺(tái))進(jìn)行最近100天的統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如表:
日銷售量1234
頻數(shù)A40B5
頻率$\frac{2}{5}$C$\frac{3}{20}$D
(1)求出表中A、B、C、D的值;
(2)①試對(duì)以上表中的銷售x與頻數(shù)Y的關(guān)系進(jìn)行相關(guān)性檢驗(yàn),是否有95%把握認(rèn)為x與Y之間具有線性相關(guān)關(guān)系,請(qǐng)說明理由;
②若以上表頻率為概率,且每天的銷售量相互獨(dú)立,已知每臺(tái)電視機(jī)的銷售利潤為200元,X表示該品牌電視機(jī)每天銷售利潤的和(單位:元),求X數(shù)學(xué)期望.
參考公式:
相關(guān)系數(shù)r=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i}-n\overline{x}•\overline{y})}{\sqrt{(\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2})(\sum_{i=1}^{n}{y}^{2}-n{\overline{y}}^{2})}}$
參考數(shù)據(jù):$\sqrt{190}$≈13.8,$\sum_{i=1}^{4}{x}_{i}{y}_{i}-4\overline{x}•\overline{y}$=-65,$\sum_{i=1}^{4}{x}_{i}^{2}-4{\overline{x}}^{2}$=5,$\sum_{i=1}^{4}{y}_{i}^{2}-4{\overline{y}}^{2}$=950,其中xi為日銷售量,yi是xi所對(duì)應(yīng)的頻數(shù).
相關(guān)性檢驗(yàn)的臨界值表
n-2 小概率
 0.050.01 
 1 0.9971.000 
 2 0.950 0.990
 3 0.8780.959

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x),x∈R是有界函數(shù),即存在M>0使得|f(x)|≤M恒成立.
(1)F(x)=f(x+1)-f(x)是有界函數(shù),則f(x),x∈R是否是有界函數(shù)?說明理由;
(2)判斷f1(x)=$\frac{4x}{{{x^2}-2x+3}}$,f2(x)=9x-2•3x是否是有界函數(shù)?
(3)有界函數(shù)f(x),x∈R滿足f(x+$\frac{1}{4}}$)+f(x+$\frac{1}{3}}$)=f(x)+f(x+$\frac{7}{12}}$),f(x),x∈R是否是周期函數(shù),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知{an},{bn}為兩非零有理數(shù)列(即對(duì)任意的i∈N*,ai,bi均為有理數(shù)),{dn}為一無理數(shù)列(即對(duì)任意的i∈N*,di為無理數(shù)).
(1)已知bn=-2an,并且(an+bndn-andn2)(1+dn2)=0對(duì)任意的n∈N*恒成立,試求{dn}的通項(xiàng)公式.
(2)若{dn2}為有理數(shù)列,試證明:對(duì)任意的n∈N*,(an+bndn-andn2)(1+dn2)=1+dn恒成立的充要條件為$\left\{\begin{array}{l}{a_n}=\frac{1}{1-d_n^4}\\{b_n}=\frac{1}{1+d_n^2}\end{array}$.
(3)已知sin2θ=$\frac{24}{25}$(0<θ<$\frac{π}{2}$),dn=$\root{3}{{tan(n•\frac{π}{2})+{{(-1)}^n}θ}}$,對(duì)任意的n∈N*,(an+bndn-andn2)(1+dn2)=1恒成立,試計(jì)算bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.?dāng)?shù)列{an}滿足:a1=1,且對(duì)任意的n∈N*都有:an+1=an+n+1,則$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{2016}}$=( 。
A.$\frac{2015}{2016}$B.$\frac{2015}{1008}$C.$\frac{2016}{2017}$D.$\frac{4032}{2017}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.2016屆高三某次聯(lián)考之后,某中學(xué)的數(shù)學(xué)教師對(duì)A班和B班共n名學(xué)生的數(shù)學(xué)成績進(jìn)行了統(tǒng)計(jì)(滿分150分),得到如下各分?jǐn)?shù)段內(nèi)的男生人數(shù)統(tǒng)計(jì)表和各個(gè)分?jǐn)?shù)段人數(shù)的頻率分布直方圖.

 組數(shù) 分組 男生 占本組的頻率
 第一組[80,90) 12 0.6
 第二組[90,100) 10 p
 第三組[100,110) 10 0.5
 第四組[110,120) a 0.4
 第五組[120,130) 3 0.3
 第六組[130,140] 6 0.6
(1)求n,a,p的值和頻率分布直方圖中第二組矩形的高;
(2)分?jǐn)?shù)在[130,140]的男生中,A班有4人,從這6個(gè)男生中任選2人進(jìn)行學(xué)習(xí)經(jīng)驗(yàn)交流,求取到2人中至少一名是B班男生的概率;
(3)若110分(含110分)以上為優(yōu)秀.
(i)完成下面的2×2列聯(lián)表,并求出男生和女生的優(yōu)秀率;
          成績
性別
 優(yōu)秀不優(yōu)秀  總計(jì)
 男生   
 女生   
 總計(jì)   
(ii)根據(jù)上面表格的數(shù)據(jù),判斷是否有90%以上的把握認(rèn)為“數(shù)學(xué)成績與性別有關(guān)”?
附表及公式:
 P(K2≥k) 0.1000.050 0.010 0.001 
 k 2.706 3.841 6.63510.828 
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求證:關(guān)于x的方程ax2+bx+c=0有一個(gè)根為2的充要條件是4a+2b+c=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的前n項(xiàng)和Sn=k•3n-m,且a1=3,a3=27.
(I)求證:數(shù)列{an}是等比數(shù)列;
(II)若anbn=log3an+1,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖是某幾何體的三視圖,則該幾何體的體積為$10\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案