18.已知數(shù)列{an}的前n項(xiàng)和Sn=k•3n-m,且a1=3,a3=27.
(I)求證:數(shù)列{an}是等比數(shù)列;
(II)若anbn=log3an+1,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (I)利用遞推關(guān)系與等比數(shù)列的定義即可證明.
(II)利用“錯(cuò)位相減法”、等比數(shù)列的求和公式即可得出.

解答 (I)證明:∵${S_n}=k•{3^n}-m$,∴S1=a1=3k-m=3,a3=S3-S2=18k=27,解得$k=m=\frac{3}{2}$.
則當(dāng)n≥2時(shí),${a_n}={S_n}-{S_{n-1}}=\frac{3}{2}•{3^n}-\frac{3}{2}•{3^{n-1}}={3^n}$,
又a1=3,∴?n∈N*,${a_n}={3^n}$.
則$\frac{a_n}{{{a_{n-1}}}}=3$為常數(shù),故由等比數(shù)列的定義可知,數(shù)列{an}是等比數(shù)列.
(II)解:∵anbn=log3an+1,∴${b_n}=\frac{n+1}{3^n}$.
則${{T}_n}=\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+…+\frac{n}{{{3^{n-1}}}}+\frac{n+1}{3^n}$,
∴$\frac{1}{3}{{T}_n}=\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+…+\frac{n}{3^n}+\frac{n+1}{{{3^{n+1}}}}$,
則$\frac{2}{3}{{T}_n}=\frac{2}{3}+({\frac{1}{3^2}+\frac{1}{3^3}+…+\frac{1}{3^n}})-\frac{n+1}{{{3^{n+1}}}}=\frac{5}{6}-\frac{2n+5}{{2•{3^{n+1}}}}$,
即${{T}_n}=\frac{1}{4}({5-\frac{2n+5}{3^n}})$(n∈N*).

點(diǎn)評(píng) 本題考查了遞推關(guān)系與等比數(shù)列的定義、“錯(cuò)位相減法”、等比數(shù)列的求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=4sinxcos(x+$\frac{π}{6}$)+1.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)在△ABC,角A,B,C的對(duì)邊分別為a,b,c,若f(A)=2,a=3,S△ABC=$\sqrt{3}$,求b2+c2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知X的分布列為:設(shè)Y=6X+1,則Y的數(shù)學(xué)期望E(Y)的值是( 。
X-101
P$\frac{1}{2}$$\frac{1}{6}$a
A.0B.$-\frac{1}{6}$C.1D.$\frac{29}{36}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知點(diǎn)A(1,3),B(2,-3),C(m,0),向量$\overrightarrow{AB}•\overrightarrow{BC}=0$,則實(shí)數(shù)m的值是( 。
A.20B.21C.22D.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知$\vec a$=(2,1),$\vec b$=(3,λ).若(2$\vec a-\vec b}$)∥$\vec b$,則λ的值為( 。
A.$\frac{3}{2}$B.$\frac{2}{3}$C.3D.-1或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若a、b滿足條件3+log2a=2-log2b(a>0,b>0),則$\frac{1}{a}$+$\frac{1}$的最小值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知|${\overrightarrow{OA}}$|=1,|${\overrightarrow{OB}}$|=2,∠AOB=$\frac{2π}{3}$,$\overrightarrow{OC}$=$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{1}{4}$$\overrightarrow{OB}$,則$\overrightarrow{OA}$•$\overrightarrow{OC}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)0<m<$\frac{1}{2}$,若$\frac{1}{m}$+$\frac{2}{1-2m}$≥k2-2k恒成立,則k的取值范圍為( 。
A.[-2,0)∪(0,4]B.[-4,0)∪(0,2]C.[-4,2]D.[-2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=mx2+(1-3m)x-4,m∈R.
(Ⅰ)當(dāng)m=1時(shí),求f(x)在區(qū)間[-2,2]上的最大值和最小值;
(Ⅱ)解關(guān)于x的不等式f(x)>-1;
(Ⅲ)當(dāng)m<0時(shí),若存在x0∈(1,+∞),使得f(x0)>0,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案