20.已知f(x),x∈R是有界函數(shù),即存在M>0使得|f(x)|≤M恒成立.
(1)F(x)=f(x+1)-f(x)是有界函數(shù),則f(x),x∈R是否是有界函數(shù)?說明理由;
(2)判斷f1(x)=$\frac{4x}{{{x^2}-2x+3}}$,f2(x)=9x-2•3x是否是有界函數(shù)?
(3)有界函數(shù)f(x),x∈R滿足f(x+$\frac{1}{4}}$)+f(x+$\frac{1}{3}}$)=f(x)+f(x+$\frac{7}{12}}$),f(x),x∈R是否是周期函數(shù),請說明理由.

分析 (1)根據(jù)條件舉反例f(x)=x,即可判斷,
(2)根據(jù)函數(shù)的性質(zhì)求出函數(shù)的值域即可,
(3)根據(jù)條件進行化簡,結(jié)合函數(shù)周期性的定義進行判斷.

解答 解:(1)否,反例:f(x)=x,F(xiàn)(x)=f(x+1)-f(x)=1有界,但f(x)=x無界.
(2)當x=0時,f1(x)=0,
當x≠0時,f1(x)=$\frac{4}{x+\frac{3}{x}-2}$,
當x>0時,x+$\frac{3}{x}$-2≥2$\sqrt{x•\frac{3}{x}}$-2=2$\sqrt{3}$-2,此時f1(x)∈(0,$\frac{4}{2\sqrt{3}-2}$],
當x<0時,x+$\frac{3}{x}$-2≤-2$\sqrt{(-x)•\frac{3}{-x}}$-2=-2$\sqrt{3}$-2,此時f1(x)∈[$\frac{4}{-2\sqrt{3}-2}$,0),
綜上f1(x)∈[$\frac{4}{-2\sqrt{3}-2}$,$\frac{4}{2\sqrt{3}-2}$],有界,
f2(x)=9x-2•3x=(3x-1)2-1≥-1,則|f2(x)|≥0,則f2(x)無界.
(3)$f({x+\frac{4}{12}})-f(x)=f({x+\frac{7}{12}})-f({x+\frac{3}{12}})=f({x+\frac{16}{12}})-f({x+\frac{12}{12}})$,
∴$f({x+1})-f(x)=f({x+\frac{16}{12}})-f({x+\frac{4}{12}})$,$f({x+\frac{4}{12}})-f({x+\frac{1}{12}})=f({x+\frac{8}{12}})-f({x+\frac{5}{12}})=f({x+\frac{16}{12}})-f({x+\frac{13}{12}})$,
綜上$f({x+1})-f(x)=f({x+\frac{13}{12}})-f({x+\frac{1}{12}})$,
∴f(x+1)-f(x)=f(x+2)-f(x+1)
∴f(x+n)=f(x)+n(f(x+1)-f(x)),∵f(x)有界,∴f(x)=f(x+1),是周期函數(shù).

點評 本題主要考查抽象函數(shù)的應用,有界函數(shù)的定義轉(zhuǎn)化求函數(shù)的取值范圍是解決本題的關鍵.考查學生的運算和轉(zhuǎn)化能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.在極坐標系下,點(2,$\frac{π}{6}$)到直線ρcos(θ-$\frac{2π}{3}$)=1的距離為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=|x-a|+|x+1|
(1)若a=2,求函數(shù)f(x)的最小值;
(2)如果關于x的不等式f(x)<2的解集不是空集,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=4sinxcos(x+$\frac{π}{6}$)+1.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)在△ABC,角A,B,C的對邊分別為a,b,c,若f(A)=2,a=3,S△ABC=$\sqrt{3}$,求b2+c2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.$n=\overline{abc}$表示一個三位數(shù),記f(n)=(a+b+c)+(a×b+b×c+a×c)+a×b×c,如f(123)=(1+2+3)+(1×2+1×3+2×3)+1×2×3=23,則滿足f(n)=n的三位數(shù)共有9個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若用反證法證明命題:三角形的內(nèi)角中至少有一個大于60°,則與命題結(jié)論相矛盾的假設為( 。
A.假設三角形的3個內(nèi)角都大于60°
B.假設三角形的3個內(nèi)角都不大于60°
C.假設三角形的3個內(nèi)角中至多有一個大于60°
D.假設三角形的3個內(nèi)角中至多有兩個大于60°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.直線a、b是空間一組異面直線,長度確定的線段AB在直線a上滑動,長度確定的線段CD在直線b上滑動,△ACD的面積記為S,四面體ABCD的體積記為V,則( 。
A.S為常數(shù),V不確定B.S不確定,V為常數(shù)C.S、V均為常數(shù)D.S、V均不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知X的分布列為:設Y=6X+1,則Y的數(shù)學期望E(Y)的值是( 。
X-101
P$\frac{1}{2}$$\frac{1}{6}$a
A.0B.$-\frac{1}{6}$C.1D.$\frac{29}{36}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知|${\overrightarrow{OA}}$|=1,|${\overrightarrow{OB}}$|=2,∠AOB=$\frac{2π}{3}$,$\overrightarrow{OC}$=$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{1}{4}$$\overrightarrow{OB}$,則$\overrightarrow{OA}$•$\overrightarrow{OC}$=$\frac{1}{4}$.

查看答案和解析>>

同步練習冊答案