【題目】以橢圓的四個頂點為頂點的四邊形的四條邊與共有個交點,且這個交點恰好把圓周六等分.
(1)求橢圓的方程;
(2)若直線與相切,且橢圓相交于兩點,求的最大值.
【答案】(1);(2).
【解析】
試題分析:(1)由題意得,,從而得到的值,由此能求出橢圓方程;(2)當直線的斜率不存在時,直線的方程可求出,當當直線的斜率存在時,可設(shè)直線的方程,利用根的判別式,韋達定理,弦長公式,結(jié)合已知條件能求出的最大值.
試題解析:(1)如圖,依題意,, 因為,所以, 得,故橢圓的方程為 .
(2)當直線的斜率不存在時,直線的方程為,代入,得,此時.
當直線的斜率存在時,設(shè)直線的方程為, 因為直線與相切,所以,即, 由消去,整理得,
, 由,得,設(shè),則,
所以,所以
, 當且僅當, 即時,取得最大值.綜上所述,最大值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點分別為,,短軸的兩個端點分別為,.
(1)若為等邊三角形,求橢圓的方程;
(2)若橢圓的短軸長為2,過點的直線與橢圓相交于、兩點,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C的左、右焦點分別為、,且經(jīng)過點
(I)求橢圓C的方程:
(II)直線y=kx(kR,k≠0)與橢圓C相交于A,B兩點,D點為橢圓C上的動點,且|AD|=|BD|,請問△ABD的面積是否存在最小值?若存在,求出此時直線AB的方程:若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖(1),在平行四邊形中, , 分別為的中點.現(xiàn)把平行四邊形沿折起,如圖(2)所示,連結(jié).
(1)求證: ;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)談?wù)摵瘮?shù)的單調(diào)性;
(Ⅱ)若函數(shù)在區(qū)間內(nèi)任取有兩個不相等的實數(shù),,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個盒中裝有編號分別為1,2,3,4的四個形狀大小完全相同的小球.
(1)從盒中任取兩球,求取出的球的編號之和大于5的概率.
(2)從盒中任取一球,記下該球的編號,將球放回,再從盒中任取一球,記下該球的編號,求的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com