【題目】以橢圓的四個(gè)頂點(diǎn)為頂點(diǎn)的四邊形的四條邊與共有個(gè)交點(diǎn),且這個(gè)交點(diǎn)恰好把圓周六等分.

(1)求橢圓的方程

(2)若直線相切,且橢圓相交于兩點(diǎn),求的最大值.

【答案】(1);(2).

【解析】

試題分析:(1)由題意得,,從而得到的值,由此能求出橢圓方程;(2)當(dāng)直線的斜率不存在時(shí),直線的方程可求出,當(dāng)當(dāng)直線的斜率存在時(shí),可設(shè)直線的方程,利用根的判別式,韋達(dá)定理,弦長(zhǎng)公式,結(jié)合已知條件能求出的最大值.

試題解析:(1)如圖,依題意,, 因?yàn)?/span>,所以, ,故橢圓的方程為 .

(2)當(dāng)直線的斜率不存在時(shí),直線的方程為,代入,得,此時(shí).

當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為, 因?yàn)橹本相切,所以,即, 消去,整理得,

, ,得,設(shè),則,

所以,所以

, 當(dāng)且僅當(dāng), 時(shí),取得最大值.綜上所述,最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,短軸的兩個(gè)端點(diǎn)分別為

1)若為等邊三角形,求橢圓的方程;

2)若橢圓的短軸長(zhǎng)為2,過點(diǎn)的直線與橢圓相交于、兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的左、右焦點(diǎn)分別為,且經(jīng)過點(diǎn)

I)求橢圓C的方程:

II)直線y=kx(kR,k≠0)與橢圓C相交于A,B兩點(diǎn),D點(diǎn)為橢圓C上的動(dòng)點(diǎn),且|AD|=|BD|,請(qǐng)問△ABD的面積是否存在最小值?若存在,求出此時(shí)直線AB的方程:若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),在平行四邊形中, , 分別為的中點(diǎn).現(xiàn)把平行四邊形沿折起,如圖(2)所示,連結(jié).

1)求證: ;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)的最小值為,求的值;

(2)證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)談?wù)摵瘮?shù)的單調(diào)性;

(Ⅱ)若函數(shù)在區(qū)間內(nèi)任取有兩個(gè)不相等的實(shí)數(shù),,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒中裝有編號(hào)分別為1,2,3,4的四個(gè)形狀大小完全相同的小球.

(1)從盒中任取兩球,求取出的球的編號(hào)之和大于5的概率.

(2)從盒中任取一球,記下該球的編號(hào),將球放回,再?gòu)暮兄腥稳∫磺,記下該球的編?hào),求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知, .

(1)求當(dāng)時(shí), 的值域;

(2)若函數(shù)內(nèi)有且只有一個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形, 為側(cè)棱的中點(diǎn).

(Ⅰ)求證: ∥平面

(Ⅱ)若,,

求證:平面平面

查看答案和解析>>

同步練習(xí)冊(cè)答案