13.若點P是曲線y=ex上任意一點,則點P到直線y=x-1的最小距離為$\sqrt{2}$.

分析 設(shè)經(jīng)過點P(x0,y0)與直線y=x-1平行且與曲線y=ex相切的直線為y=x+m.y′=${e}^{{x}_{0}}$,令${e}^{{x}_{0}}$=1,解得x0,可得切點P,利用點到直線的距離公式即可得出.

解答 解:設(shè)經(jīng)過點P(x0,y0)與直線y=x-1平行且與曲線y=ex相切的直線為y=x+m.
y′=${e}^{{x}_{0}}$,令${e}^{{x}_{0}}$=1,解得x0=0,可得切點P(0,1),
∴點P到直線y=x-1的最小距離d=$\frac{|0-1-1|}{\sqrt{2}}$=$\sqrt{2}$.
故答案為:$\sqrt{2}$.

點評 本題考查了導(dǎo)數(shù)的幾何意義、點到直線的距離公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在正方體ABCD-A1B1C1D1各個面上的對角線所在直線中,與直線AD1所成角是$\frac{π}{3}$的條數(shù)是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列說法不正確的個數(shù)為( 。
①演繹推理是一般到特殊的推理;②演繹推理得到的結(jié)論一定正確;③合情推理是演繹推理的前提,演繹推理是合情推理的可靠性.
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.等差數(shù)列{an}的前n項和為Sn,若Sn=3,S2n=10,則S3n=( 。
A.13B.17C.21D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知命題p:“a>b>0”是“$\frac{1}{a}<\frac{1}$”成立的必要不充分條件;
命題q:若函數(shù)y=f(x-1)為偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱,
則下列命題為真命題的是( 。
A.p∨qB.p∧qC.¬p∧qD.p∨¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)y=2sin(2x-$\frac{π}{4}$)(x∈R)
(1)利用五點法作出x∈[${\frac{π}{8},\frac{9π}{8}}$]上的圖象;
(2)求出f(x)的最大值,以及使函數(shù)取得最大值時自變量x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=|x-1|+2014.
(I)解關(guān)于x的不等式f(x)>|x|+2014;
(Ⅱ)若f(|a-4|+3)>f((a-4)2+1),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知集合A={x|x2+2x<0},B={x|y=$\sqrt{x+1}$}
(1)求(∁RA)∩B;  
(2)若集合C={x|a<x<2a+1}且C⊆A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在三棱柱ABC-A1B1C1中,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{B{B}_{1}}$=$\overrightarrow$,$\overrightarrow{AC}$=$\overrightarrow{c}$,則$\overrightarrow{B{C}_{1}}$=$\overrightarrow{c}$$-\overrightarrow{a}$+$\overrightarrow$.(用向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$表示)

查看答案和解析>>

同步練習(xí)冊答案