X | 1 | 2 | 3 | 4 |
Y | 51 | 48 | 45 | 42 |
分析 (1)確定三角形地塊的內(nèi)部和邊界上的作物株數(shù),分別求出基本事件的個數(shù),即可求它們恰好“相近”的概率;
(2)確定變量的取值,求出相應的概率,從而可得年收獲量的分布列.
解答 解:(1)所種作物總株數(shù)N=1+2+3+4+5=15,其中三角形地塊內(nèi)部的作物株數(shù)為3,邊界上的作物株數(shù)為12,從三角形地塊的內(nèi)部和邊界上分別隨機選取一株的不同結(jié)果有${C}_{3}^{1}{•C}_{12}^{1}=36$種,選取的兩株作物恰好“相近”的不同結(jié)果有3+3+2=8,∴從三角形地塊的內(nèi)部和邊界上分別隨機選取一株作物,求它們恰好“相近”的概率為$\frac{8}{36}=\frac{2}{9}$,
(2)先求從所種作物中隨機選取一株作物的年收獲量為Y的分布列
∵P(Y=51)=P(X=1),P(Y=48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P(X=4)
∴只需求出P(X=k)(k=1,2,3,4)即可.
記nk為其“相近”作物恰有k株的作物株數(shù)(k=1,2,3,4),則n1=2,n2=4,n3=6,n4=3
由P(X=k)=$\frac{nk}{N}$得P(X=1)=$\frac{2}{15}$,P(X=2)=$\frac{4}{15}$,P(X=3)=$\frac{6}{15}$,P(X=4)=$\frac{3}{15}$
∴所求的分布列為
Y | 51 | 48 | 45 | 42 |
P | $\frac{2}{15}$ | $\frac{4}{15}$ | $\frac{6}{15}$ | $\frac{3}{15}$ |
點評 本題考查古典概率的計算,考查分布列與數(shù)學期望,考查學生的計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {m|m≥-3} | B. | {m|m≤-3} | C. | {m|m≤2} | D. | {m|m≥2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com