12.已知集合A={1,2,3,x},B={3,x2},且A∪B={1,2,3,x},求x的值.

分析 由題意可知,x2=x或x2=1或x2=2,分別求出每一種情況下的x值,驗(yàn)證集合中元素的互異性得答案.

解答 解:(1)當(dāng)x2=x時,x=0或x=1,
當(dāng)x=0時,符合題意,當(dāng)x=1時,集合A違背集合中元素的互異性,
故x=0;
(2)當(dāng)x2=1時,x=-1或x=1,
當(dāng)x=-1時,符合題意,當(dāng)x=1時,集合A違背集合中元素的互異性,
故x=-1;
(3)當(dāng)x2=2時,$x=-\sqrt{2}$或x=$\sqrt{2}$,經(jīng)檢驗(yàn)符合題意.
綜上所述:所求x值為:0或-1或$±\sqrt{2}$.

點(diǎn)評 本題考查并集及其運(yùn)算,考查了集合中元素的特性,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若sin($\frac{π}{4}$+θ)=$\frac{\sqrt{2}}{10}$,θ∈[0,π],則cos2θ=-$\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)的定義域?yàn)锳,若x1,x2∈A且f(x1)=f(x2)時總有x1=x2,則稱f(x) 為單函數(shù).例如,函數(shù)f(x)=2x+1(x∈R)是單函數(shù).下列命題:
①函數(shù)f(x)=x2(x∈R)是單函數(shù);
②若f(x)為單函數(shù),x1,x2∈A且x1≠x2,則f(x1)≠f(x2);
③若f:A→B為單函數(shù),則對于任意b∈B,A中至多有一個元素與之對應(yīng);
④函數(shù)f(x)在某區(qū)間上具有單調(diào)性,則f(x)一定是單函數(shù).
其中正確的是②③.(寫出所有正確的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知正四面體A1A2A3A4,點(diǎn)A5,A6,A7,A8,A9,A10分別是所在棱的中點(diǎn),如圖,則當(dāng)1≤i≤10,1≤j≤10,且i≠j時,數(shù)量積$\overrightarrow{{A}_{1}{A}_{2}}•\overrightarrow{{A}_{i}{A}_{j}}$的不同數(shù)值的個數(shù)為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=xe1-2x,則f′(1)=$-\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知a,b∈R,函數(shù)f(x)=ax-b,若對任意x∈[-1,1],有0≤f(x)≤1,則$\frac{3a+b+1}{a+2b-2}$的取值范圍為( 。
A.[-$\frac{1}{2}$,0]B.[-$\frac{4}{5}$,0]C.[-$\frac{1}{2}$,$\frac{2}{7}$]D.[-$\frac{4}{5}$,$\frac{2}{7}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某商店經(jīng)營一批進(jìn)價為每千克3.5元的商品,調(diào)查發(fā)現(xiàn),此商品的銷售單價x(元/千克)與日銷量y(千克)之間有如下關(guān)系:
x5678
y20171512
若x與y具有線性相關(guān)關(guān)系y=$\stackrel{∧}$x+$\stackrel{∧}{a}$,且$\stackrel{∧}$=-2.6為使日銷售利潤最大,則銷售單價應(yīng)定為(結(jié)果保留一位小數(shù))( 。
A.7.5B.7.8C.8.1D.8.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.-20是數(shù)列{(-1)n+1n(n+1)}的第4項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知α∈(0,$\frac{π}{2}$),β∈($\frac{π}{2}$,π),cosβ=-$\frac{3}{5}$,sin(α+β)=$\frac{5}{13}$,求sinα的值.

查看答案和解析>>

同步練習(xí)冊答案