5.如圖,向邊長為1的正方形內(nèi)隨機(jī)的投點(diǎn),所投的點(diǎn)落在由y=x2和y=x${\;}^{\frac{1}{2}}}$圍成的封閉圖形的概率為$\frac{1}{3}$.

分析 欲求所投的點(diǎn)落在葉形圖內(nèi)部的概率,利用幾何概型解決,只須利用定積分求出葉形圖的面積,最后利用它們的面積比求得即可概率.

解答 解:由定積分可求得陰影部分的面積為
S=${∫}_{0}^{1}(\sqrt{x}-{x}^{2})dx$=($\frac{2}{3}{x}^{\frac{3}{2}}-\frac{1}{3}{x}^{3}$)${|}_{0}^{1}$=$\frac{1}{3}$,
邊長為1的正方形的面積為1,所以所求概率P=$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.

點(diǎn)評 本題考查了利用定積分求面積以及幾何摡型知識,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如表是一位母親給兒子作的成長記錄:
年齡/周歲3456789
身高/cm94.8104.2108.7117.8124.3130.8139.1
根據(jù)以上樣本數(shù)據(jù),她建立了身高y(cm)與年齡x(周歲)的線性回歸方程為$\stackrel{∧}{y}$=7.19x+73.93,給出下列結(jié)論:
①y與x具有正的線性相關(guān)關(guān)系;    
②回歸直線過樣本的中心點(diǎn)(42,117.1);
③兒子10歲時的身高是145.83cm;  
④兒子年齡增加1周歲,身高約增加7.19cm.
其中,正確結(jié)論的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若向量$\overrightarrow a$與$\overrightarrow b$不共線,$\overrightarrow a\overrightarrow b≠0$,且$\overrightarrow c=\overrightarrow a-(\frac{\overrightarrow a\overrightarrow a}{\overrightarrow a\overrightarrow b})\overrightarrow b$,則向量$\overrightarrow{a}$與$\overrightarrow{c}$的夾角為( 。
A.0B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an}的通項公式為an=$\frac{1}{2n-1}$,數(shù)列{bn}滿足2an+bn=1,若對于任意n∈N*恒成立,不等式$\sqrt{_{2}_{3}…_{n+1}}$≥$\frac{k}{(1+{a}_{1})(1+{a}_{2})…(1+{a}_{n})}$恒成立,則k的最大值為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$都是單位向量,且向量$\overrightarrow{a}$,$\overrightarrow$的夾角為60°,若$\overrightarrow{c}$=2x$\overrightarrow{a}$+y$\overrightarrow$,其中x,y為正實數(shù),則xy的最大值為( 。
A.$\frac{1}{6}$B.$\frac{1}{5}$C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.二元一次方程組的增廣矩陣為$({\begin{array}{l}1&{-2}&5\\ 3&1&8\end{array}})$,通過矩陣的變換,得方程組解的增廣矩陣為$[\begin{array}{l}{1}&{0}&{3}\\{0}&{1}&{-1}\end{array}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知過原點(diǎn)的動直線l與圓C1:x2+y2-6x+5=0.
(1)求直線l與圓相交時,它的斜率K的取值范圍;
(2)當(dāng)l與圓相交于不同的兩點(diǎn)A,B時,求線段AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知圓F的方程為x2+y2-2x=0,與x軸正半軸交于點(diǎn)A,橢圓C的中心在原點(diǎn),焦點(diǎn)在圓心F,頂點(diǎn)為A.
(1)求橢圓的方程;
(2)如圖D,C是橢圓上關(guān)于y軸對稱的兩點(diǎn),在x軸上存在點(diǎn)B,使得四邊形ABCD為菱形,求B點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知△ABC中,a=$\sqrt{13}$,∠A=60°,S=3$\sqrt{3}$,求b、c的值.

查看答案和解析>>

同步練習(xí)冊答案