分析 (1)設(shè)出圓心C的坐標為(a,b),半徑為r,根據(jù)圓心C在直線x-3y=0上,列出關(guān)于a與b的關(guān)系式,用b表示出a,同時根據(jù)圓C與y軸相切,得到圓的半徑r=|a|,由直線y=x與圓相交,利用點到直線的距離公式表示出圓心C到直線y=x的距離d,根據(jù)弦長的一半,弦心距d及圓的半徑r構(gòu)成直角三角形,利用勾股定理列出關(guān)于b的方程,求出方程的解得到b的值,進而得到a與半徑的值,寫出圓C的方程即可;
(2)設(shè)M(x,y),由|MA|=2|MO|,利用兩點間的距離公式列出關(guān)系式,整理后得到點M的軌跡為以(0,-1)為圓心,2為半徑的圓,可記為圓D,由M在圓C上,得到圓C與圓D相交,即可得出結(jié)論.
解答 解:(1)設(shè)圓C的標準方程為(x-a)2+(y-b)2=r2,(a≥0)
此時圓心坐標為(a,b),半徑為r,
把圓心坐標代入直線x-3y=0中得:a=3b,
又圓C與y軸相切,∴r=|a|,
∵圓心C到直線y=x的距離d=$\frac{|a-b|}{\sqrt{2}}$=$\sqrt{2}$|b|,弦長的一半為$\sqrt{7}$,
∴根據(jù)勾股定理得:2b2+7=a2=9b2,解得b=±1,
若b=1,a=3,r=3,此時圓C的標準方程為(x-3)2+(y-1)2=9;
若b=-1,a=-3,r=3,此時圓C的標準方程為(x+3)2+(y+1)2=9(舍去)),
綜上,圓C的標準方程為(x-3)2+(y-1)2=9;
(2)設(shè)點M(x,y),由|MA|=2|MO|,知:x2+(y-3)2=4(x2+y2),
化簡得:x2+(y+1)2=4,
∴點M的軌跡為以(0,-1)為圓心,2為半徑的圓,可記為圓D,
又∵點M在圓C上,圓心距$\sqrt{13}$滿足3-2<$\sqrt{13}$<3+2
∴圓C與圓D的關(guān)系為相交,
∴圓上存在兩個點M,使得|MA|=2|MO|.
點評 此題考查了直線與圓相交的性質(zhì),點到直線的距離公式,以及圓與圓的位置關(guān)系的判定,涉及的知識有:兩點間的距離公式、勾股定理、圓的標準方程,是一道綜合性較強的試題.當直線與圓相交時,常常利用弦長的一半,弦心距及圓的半徑構(gòu)造直角三角形,利用勾股定理來解決問題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com