4.-225°是第(  )象限角.
A.B.C.D.

分析 由于角-225°的終邊落在第二象限,故-225°是第二象限角.

解答 解:由于角-225°的終邊落在第二象限,故-225°是第二象限角,
故選B.

點評 本題主要考查象限角、象限界角的定義,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.下列命題中的假命題為( 。
A.設(shè)α、β為兩個不同平面,若直線l在平面α內(nèi),則“α⊥β”是“l(fā)⊥β”的必要不充分條件
B.設(shè)隨機變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=p,則P(-1<ξ<0)=$\frac{1}{2}$-p
C.要得到函數(shù)f(x)=cos(2x+$\frac{π}{3}}$)的圖象,只需將函數(shù)g(x)=sin(2x+$\frac{π}{3}}$)的圖象向左平移$\frac{π}{4}$個單位長度
D.?x∈(0,$\frac{π}{2}$),x<sinx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知數(shù)列{an}滿足a1=1,a2=$\frac{1}{2}$,且an+2=$\frac{{{a}_{n+1}}^{2}}{{a}_{n}+{a}_{n+1}}$(n∈N*),則如圖中第10行所有數(shù)的和為2046.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.曲線f(x)=$\sqrt{2x-4}$在點(4,f(4))處的切線方程為x-2y=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知曲線C:y=x2(x≥0),直線l為曲線C在點A(1,1)處的切線.
(Ⅰ)求直線l的方程;
(Ⅱ)求直線l與曲線C以及x軸所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π),在同一周期內(nèi),當x=$\frac{π}{12}$時,f(x)取得最大值3;當x=$\frac{7π}{12}$時,f(x)取得最小值-3.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0,現(xiàn)給出如下結(jié)論:
①f(0)f(1)<0;
②f(0)f(1)>0;
③f(0)f(3)>0;
④f(0)f(3)<0;
⑤f(1)f(3)>0;
⑥f(1)f(3)<0.
其中正確的結(jié)論的序號是①③⑥.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.己知圓C與y軸相切,圓心在射線l1:x-3y=0(x≥0)上,且被直線l2:y=x截得的弦長為2$\sqrt{7}$.
(1)求此圓的方程.
(2)已知O(0,0),A(0,3),圓上是否存在點M,使得|MA|=2|MO|,若存在,指出有幾個點M,并給出理由,若不存在點M,也請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知命題p:$\frac{x-3}{x}$>2是假命題,求實數(shù)x的取值范圍.

查看答案和解析>>

同步練習冊答案