分析 (Ⅰ)由條件利用三角恒等變換化簡f(x)的解析式,再利用正弦函數(shù)的周期性、最值,得出結(jié)論.
(Ⅱ)由條件求得sin(2α-$\frac{π}{4}$)=1,再根據(jù)2α-$\frac{π}{4}$∈(-$\frac{π}{4}$,$\frac{3π}{4}$);可得2α-$\frac{π}{4}$=$\frac{π}{2}$,從而求得α的值.
解答 解:(Ⅰ)∵函數(shù)$f(x)=sinxcosx+{sin^2}x-\frac{1}{2}$=$\frac{1}{2}$sin2x+$\frac{1-cos2x}{2}$-$\frac{1}{2}$=$\frac{\sqrt{2}}{2}$sin(2x-$\frac{π}{4}$),
∴f(x)的最小正周期為$\frac{2π}{2}$=π,函數(shù)的最大值為$\frac{\sqrt{2}}{2}$.
(Ⅱ)若$α∈(0,\;\frac{π}{2})$,2α-$\frac{π}{4}$∈(-$\frac{π}{4}$,$\frac{3π}{4}$);∵$f(α)=\frac{{\sqrt{2}}}{2}$=$\frac{\sqrt{2}}{2}$sin(2α-$\frac{π}{4}$),
∴sin(2α-$\frac{π}{4}$)=1,∴2α-$\frac{π}{4}$=$\frac{π}{2}$,∴α=$\frac{3π}{8}$.
點評 本題主要考查三角恒等變換,正弦函數(shù)的周期性、最值,根據(jù)三角函數(shù)的值求角,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{3}{8}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若方程②③都有實根則方程①無實根 | |
B. | 若方程②③都有實根則方程①有實根 | |
C. | 若方程②無實根但方程③有實根時,則方程①無實根 | |
D. | 若方程②無實根但方程③有實根時,則方程①有實根 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|x<-1或x>-ln3} | B. | {x|-1<x<-ln3} | C. | {x|x>-ln3} | D. | {x|x<-ln3} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1,2} | B. | {0,1,2} | C. | (-1,3) | D. | {-1,0,1,2} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com