分析 由已知利用同角三角函數(shù)基本關系式可求cosα的值,利用同角三角函數(shù)基本關系式即可化簡求值得解.
解答 解:∵sinα=$\frac{4}{5}$,
∴cosα=±$\sqrt{1-si{n}^{2}α}$=±$\frac{3}{5}$,
∴$\frac{1+tanα}{1-tanα}$=$\frac{\frac{cosα+sinα}{cosα}}{\frac{cosα-sinα}{cosα}}$=$\frac{cosα+sinα}{cosα-sinα}$=-7或-$\frac{1}{7}$.
故答案為:-7或-$\frac{1}{7}$.
點評 本題主要考查了同角三角函數(shù)基本關系式在三角函數(shù)化簡求值中的應用,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | -$\frac{6}{37}$ | C. | -$\frac{2}{5}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 等腰三角形 | B. | A=60°的三角形 | ||
C. | 等腰三角形或A=60°的三角形 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ω=$\frac{10}{11}$,φ=$\frac{π}{6}$ | B. | ω=$\frac{10}{11}$,φ=-$\frac{π}{6}$ | C. | ω=2,φ=$\frac{π}{6}$ | D. | ω=2,φ=-$\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | $\sqrt{5}$ | D. | $\frac{\sqrt{6}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com