A. | 2n-1 | B. | 2n+1-2 | C. | ${2^{\frac{n}{2}}}-\sqrt{2}$ | D. | ${2^{\frac{n-2}{2}}}-\sqrt{2}$ |
分析 把點(diǎn)的坐標(biāo)代入直線方程,求出an與an+1的關(guān)系,判斷數(shù)列的特征,即可求解前n項(xiàng)和.
解答 解:因?yàn)辄c(diǎn)($\sqrt{a_n}$,$\sqrt{{a_{n-1}}}$)在直線x-$\sqrt{2}$y=0上,
所以$\sqrt{a_n}$-$\sqrt{2}$×$\sqrt{{a_{n-1}}}$=0,即an=2an-1,
所以數(shù)列{an}是首項(xiàng)為2,公比為2的等比數(shù)列.
它的前n項(xiàng)和為:Sn=$\frac{2(1-{2}^{n})}{1-2}$=2n+1-2.
故選B.
點(diǎn)評(píng) 本題考查等比數(shù)列的前n項(xiàng)和的求法,等比數(shù)列的判斷,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,4] | B. | (-∞,4] | C. | (-4,0] | D. | [4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k>7? | B. | k>6? | C. | k>5? | D. | k>4? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com